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Abstract

The modeling of old age mortality and its dependence of factors in early life is in focus. Of
special interest is how to investigate the mediating effect of intermediate information on the
causal pathway. It is shown that the Gompertz distribution fits in very well into a combi-
nation of accelerated failure time modeling and mediation analysis, especially because old
age mortality is extremely well modeled by the Gompertz distribution. Since the accelerated
failure time model can be written as a linear model, the mediation analysis is simple.

Key words: Accelerated failure time model; Cox regression; Gompertz distribution; Histor-
ical data; Poisson regression; Proportional hazards model.



1 Introduction

The modeling of old age mortality and its dependence of factors earlier in life is addressed,
especially in the context of evaluating the effect of mediators along the causal pathway.
We argue for alternatives to the popular proportional hazards (PH) model, especially Cox
regression. There are several reasons for this. First, it is well known that old age mortality very
often is well described by the Gompertz distribution (Gompertz, 1825), except for the very
extreme old ages, say above 90 years of age (Oeppen and Vaupel, 2002). Second, accelerated
failure time (AFT) models can be expressed as linear models, which helps when interest lies
in the analysis of mediating effects in the analysis of the impact of early-life factors on old-age
mortality (Lange and Hansen, 2011; VanderWeele, 2011). Third, the results of an AFT model
fit is easier and more intuitive to interpret in terms of years lost or gained, compared to the
PH model fit which reports relative risks. Fourth, contrary to “common knowledge”, the
family of Gompertz distributions is not only a collection of PH families but also a collection
of AFT families. Kleinbaum and Klein (2005, p. 285) wrote

“Parametric models need not be AFT models. The Gompertz model is a para-
metric PH model but not an AFT model.”

The latter part of this statement is however wrong, which is easily shown using a proper
parametrization. Other authors make the same mistake.

The paper is organized as follows. In Section 2 models of life course effects are discussed,
especially the PH and the AFT models. Then we look at the Gompertz distribution in
Section 3 and how it fits in to the models just discussed, and also show how well it fits adult
mortality data in many constellations. In Section 4 we utilize the linearity of the AFT model
in connection with the Gompertz model to model the mediating effect of mid-life factors of
early-life factors on old age mortality. Finally, in Section 5 a real example shows how to
conduct a mediation analysis with these tools.

2 Models of life course effects

The PH and AFT models are compared. Both have their advantages and drawbacks. For
the specific purpose of this paper, the AFT model is preferred. It is however seldom used in
demographic and epidemiology research, mostly for practical reasons; the PH model is very
easy to apply and suitable software is available in almost any statistical package. However,
it has its drawbacks, especially in the framework of mediation analysis.

The general regression problem in survival analysis may be formulated as follows: There
are observations of life-times, that may be left truncated and right censored, which may be
described as follows: For each individual i, i = 1, . . . , n,

(t0i, ti, di; zi)

is observed, where t0i is the left truncation (late entry) time, ti is the termination time, and
di is an indicator of death (equal to one if termination is due to death, zero otherwise, i.e.,
right censoring). The vector zi consists of a set of covariate values. Generally, ’death’ stands
for any kind of event of primary interest, but in this paper it really is death, so we stick to
this terminology.
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The question is if length of life is related to the value of the covariate vector z. This
is a classic regression problem, and a general formulation may be in terms of the survivor
function: For individual i, the survivor function is S(t, zi). For an individual with z = 0
the relation is (by definition) S(t,0) = S0(t), and the question is how to model the relation
between S0(t) and S(t, z). The two main ways are the PH and the AFT models.

2.1 The Proportional Hazards (PH) model

In event history (survival) analysis applied to epidemiology and demography, the proportional
hazards (PH) model is almost exclusively used. The main reason is it simplicity: It can be
used semi-parametrically, meaning that you do not have to specify a parametric model for
the baseline hazard corresponding to S0(). This is important when dealing with biological
life lengths; they usually do no fit very well to simple parametric models.

One drawback with the PH model is that it is restrictive. For instance, it implies that the
risk ratio is constant over age when comparing death hazards between two groups. Another
drawback is that results from an analysis are somewhat difficult to interpret. For instance,
the question “What does it mean in lost years of life that one individual has 10 percent higher
death risk than ’normal’?” has no direct answer. Yet another drawback is its non-linearity:
it is not easy to analyze mediating factors of a long-term effect on, e.g., mortality, which is
in the focus of the present paper.

The PH model is specified as

S(t; z) = S0(t)
ezβ , t > 0,

where β is the vector of regression coefficients (to be estimated), S(t, z) is the probability
of surviving past t for an individual with covariate vector z, and S0(t) is the corresponding
“baseline” probability, that is, for an individual with covariate vector value 0. The implied
relation between the corresponding hazard functions is

h(t, z) = h0(t)e
zβ, t > 0,

which makes the given name “proportional hazards model” obvious.

2.2 The Accelerated Failure Time (AFT) Model

The AFT model works directly on time, which gives results that are easy to interpret. Its
close relationship to the ordinary linear regression model makes it even more familiar to the
applied researcher. The AFT model is specified in terms of S and S0 as

S(t; z) = S0(te
zβ), t > 0, (1)

that is, time itself is multiplied by an accelerating factor exp(zβ). Utilizing the relations be-
tween the survivor, density and hazard functions gives the AFT relation for hazard functions:

h(t; bz) = h0(te
zβ)ezβ, t > 0, (2)

If the lifetime T of an individual with explanatory variables z has a survivor function
given by (1), the distribution for Y = log(T ) is easily derived:

P (Y ≥ y) = P (log(T ) ≥ y) = P (T ≥ ey) = S(ey; z) = S0(e
y+zβ). (3)
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From (3) it follows that zβ is a location parameter in the family of distributions of Y , and
(3) can be written as a log-linear model :

Y = log(T ) = zβ + ε = β0 + β1z1 + . . .+ βpzp + ε,

where exp(ε) has the distribution S0 and ε serves as the “error term”. Usually, E(ε) 6= 0,
except in the Normal case, that is, when the life distribution is assumed log-normal. Despite
the simple linear model, maximum likelihood estimation is called for due to right censoring and
left truncation. This can be handled by the function aftreg in the package eha (Broström,
2013, 2012) in R (R Development Core Team, 2013) for many distributions.

2.3 Comparing results from PH and AFT analyses

Data from nineteenth century Sweden is used in this example, and remaining life after age 60
is analyzed. A PH regression model with only sex as covariate and the Gompertz baseline
hazard function gives the result shown in Table 1.

[Table 1 about here.]

If we keep the Gompertz distribution but change the model to AFT we get:

[Table 2 about here.]

Note that in the AFT model, a positive regression parameter implies longer life, while it
is the other way around in the PH model. In the AFT model, the expected life after 60 is
about 1.077 times the expected life for men, which is 15.7 years.

Which of the models 1 and 2 fits best? One hint is given by comparing the maximized
log likelihoods, where of course the model with the largest value is considered best (this is a
comparison by the AIC criterion). The PH model wins, but only with a small margin. Note
that no formal hypothesis test is performed; the two models are not nested.

By estimating the baseline parameters separately for the genders, we can compare both
the PH and the AFT model to “the truth”. The results of the separate analyses are shown
in Tables 3 and 4.

[Table 3 about here.]

[Table 4 about here.]

It is also possible to graphically illustrate the differences by plotting the involved (esti-
mated) hazard functions, see Figure 1.

[Figure 1 about here.]

It seems as if the truth is very close to an additive hazards model (Aalen, 1989), which
would indicate that a better procedure for mediation analysis in this particular case would
be the one introduced by Lange and Hansen (2011).

Some aspects of the relations are maybe best seen on a log scale, see Figure 2.

[Figure 2 about here.]
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3 The Gompertz distribution

The Gompertz distribution is very important in modeling old age mortality. There is numer-
ous empirical evidence in the international literature confirming this. Our own experiments
with the log-normal, log-logistic, Weibull, and extreme value distributions confirm that the
Gompertz distribution stands out in model fitting of old age mortality, except maybe for
extremely high ages (centenarians).

The Gompertz distribution is characterized by an exponentially growing hazard function,
usually parametrized as follows:

hg
(
t; (λ, γ)

)
= λeγt, λ > 0, γ ≥ 0; t > 0. (4)

It is “common knowledge” that the Gompertz model is a PH model, and it is easy to see
from (4) that this is a PH model with proportionality constant λ, but it is not easy to see
how it can be described as an AFT model, like in equation (2). However, the parameter
transformation (λ, γ)→ (λ/γ, 1/γ) gives

hg
(
t; (λ, γ)

)
=
λ

γ
et/γ , λ, γ > 0; t > 0, (5)

and now λ is the “PH parameter” (as before) and γ is the “AFT parameter”. See Figure 3
for an illustration in terms of the hazard functions.

[Figure 3 about here.]

For the canonical parametrization (5), the survivor function is given by

S
(
t; (λ, γ)

)
= exp

{
−λ(et/γ − 1)

}
, t > 0. (6)

Note that the exponential distribution is a member of the family (4) (put γ = 0), but not
of (5). In the latter case it is instead a limiting distribution as λ, γ →∞ and λ/γ → constant.
In (4) it is also possible to allow negative values of γ, but the resulting life distribution is
then no longer proper; there will be a positive probability of eternal life. Some well-reputed
software still use this parametrization, however.

3.1 Left truncation

In survival analysis, left truncation frequently happens. We need to be able to calculate
conditional distributions for the survival times, given survival to the left truncation time.
Fortunately, the Gompertz distribution is closed under left truncation with only the PH
parameter changing.

More precisely, if T has the survivor function given by (6), the conditional distribution of
T , given that T > t0 is

P (T > t0 + t | T > t0) =
P (T > t0 + t)

P (T > t0)

= exp
{
−λ exp

(
(t0 + t)/γ

)
+ λ exp(t0/γ)

}
= exp

{
−λ exp(t0/γ)

(
exp(t/γ)− 1

)}
,

(7)
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which we indentify as a Gompertz distribution with “PH parameter” λ exp(t0/γ) and un-
changed “AFT parameter” γ.

This property of the Gompertz distribution has a positive consequence: When studying
old age mortality, say above age 60, it does not matter whether we take birth or the sixtieth
birthday as our defined starting event. The only difference it makes is that the baseline
hazard function will be multiplied by a constant. This may be serious enough, though, so
the recommendation is to use as starting event the age at which data are available and
incorporated in the analysis.

3.2 Empirical support for the Gompertz distribution

We look at some examples of the fit of the Gompertz distribution to adult human mortality.

Example 1. Age-specific mortality, Sweden 2012. Data from Statistics Sweden, pub-
licly available from their home page, are used. The data consist of two tables. The first
contains the number of deaths by sex, age, and year in the years 2001–2012, and the second
contains the average population the same years by sex and age. These data are collected in
a data frame, where the first six and last six rows are shown here:

## age year pop deaths sex log.pop

## 1 15 2001 53160 11 female 10.88

## 2 16 2001 51573 6 female 10.85

## 3 17 2001 49493 8 female 10.81

## 4 18 2001 48549 13 female 10.79

## 5 19 2001 49133 14 female 10.80

## 6 20 2001 49862 12 female 10.82

## age year pop deaths sex log.pop

## 2035 94 2012 2053 726 male 7.627

## 2036 95 2012 1437 593 male 7.270

## 2037 96 2012 941 420 male 6.847

## 2038 97 2012 549 300 male 6.308

## 2039 98 2012 398 216 male 5.986

## 2040 99 2012 246 142 male 5.505

There are in all 2040 rows, one for each combination of twelve years, two sexes, and 85
ages. The column headed by log.pop contains the logarithm of the population sizes. It is
needed as an offset in the Poisson regression to follow.

We can perform a discrete-time Cox regression with these data by utilizing the fact that
it is equivalent to a profiled Poisson regression. This is illustrated by looking at males in the
year 2012.

In the model, age is modeled as a factor, representing the baseline hazard. Now, it turns
out that we get almost as good fit by treating age as a continuous covariate in the model. In
R, the model is specified as follows, with male12 being the subset of the data from the year
2012:

fit2 <- glm(deaths ~ offset(log.pop) + age, data = male12, family = poisson)

Figure 4 shows the result.
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[Figure 4 about here.]

Apparently, the fit is not so good below age 40 or so, but the adult and old ages show a
good fit. Let us look at the same figure on the natural scale, see Figure 5.

[Figure 5 about here.]

Example 2. Old age mortality, nineteenth century mid-Sweden. As another simple,
illustrative example, let us analyze the effect of sex on old age mortality, disregarding all other
effects, with data from nineteenth century mid-Sweden. First we perform a traditional Cox
regression:

[Table 5 about here.]

Next we do the “same thing”, but parametrically, with a Gompertz distribution as base-
line;

[Table 6 about here.]

Now, let us compare the estimated baseline hazards, see Figure 6.

[Figure 6 about here.]

The fit of the Gompertz model is obviously excellent the 30 first years after 60.

4 The AFT approach to mediation analysis

Due to the linearity of the AFT model, we may adopt the original idea behind path analysis.
Let X be the baseline covariate of interest, and Z the intermediate covariate. We can then
in principle form the system of equations like

Y = α+ β1X + β2Z + ε,

Z = τ + β3X + η.
(8)

Given (8), the expression for Z from the second equation can be inserted into the first, and
a split of the total effect into indirect and direct effects of X on survival will follow (Lange
and Hansen, 2011; VanderWeele, 2011). The direct effect is measured by β1 and the indirect
effect by the product β2β3. We argue for using the Gompertz distribution in the AFT model,
due to its excellent fit to old age mortality.

The estimation is straightforward; The first equation is estimated by an AFT model just
described, and the second by ordinary linear regresion (OLS). The only thing that needs
some extra work is to construct confidence intervals for the indirect and total effects. The
simplest and best approach is simulation: Use the fact that β̂2 and β̂3 are uncorrelated and
asymptotically normally ditributed with means and variances given by the estimation results
and estimate the distribution of their product. For the total effect we also need the correlation
between β̂1 and β̂2, which any decent software for AFT regression will provide. Since we need
to estimate extreme percentiles, at least 10000 replicates are recommended, ideally even more.
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5 Old age mortality, nineteenth century Sweden

In an accompanying paper (Edvinsson and Broström, 2013), the effect of infant mortality at
birth on old age mortality, mediated by socio-economic status in mid-life, is studied. Here we
show the steps with a subset of that data.

In the first step, the OLS model is estimated, see see Table 7.

[Table 7 about here.]

In the second step, the AFT model is estimated, eee Table 8

[Table 8 about here.]

The mediation analysis

From the two models that have been fitted, the direct and indirect effects of infant mortality
at birth may be calculated by the method mentioned above, see Table 9.

[Table 9 about here.]

The confidence limits were estimated by simulation as described above. The estimated
indirect and direct effects are of the same magnitude (but with opposite signs), but the length
of the confidence interval for the indirect effect is much shorter than the one for the direct
effect. In conclusion, there is a statistically significant indirect effect, but both the direct and
the total effects are nonsignificant.

6 Conclusion

The AFT model combined with the Gompertz distribution is a convenient framework for
mediation analysis. It is however not the only combination; a competitor is the additive
hazards model combined with an unspecified baseline distribution.

Most of the mediation analyses in survival analysis presented so far are performed in the
nonparametric framework. A very promising alternative is to assume parametric models in
cases like this one with old age mortality, where data fits a parametric life distribution very
well.
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Covariate Mean Coef Risk Ratio S.E. L-R p

sex 0.000
male 0.421 0 1 (reference)

female 0.579 -0.210 0.811 0.027

Baseline parameters
log(scale) 2.352 10.502 0.018 0.000
log(shape) -1.544 0.214 0.046 0.000

Events 5439 TTR 106810
Max. Log Likelihood -20196

Table 1: Results from a Gompertz regression (PH).

Covariate Mean Coef Ext’d life S.E. L-R p

sex 0.000
male 0.421 0 1 (reference)

female 0.579 0.074 1.077 0.011

Baseline (canonical) parameters
log(scale) 2.312 10.099 0.020 0.000
log(shape) -1.697 0.183 0.044 0.000
Baseline mean: 15.7

Events 5439 TTR 106810
Max. Log Likelihood -20204 p-value 0

Table 2: Results from a Gompertz regression (AFT).

Baseline (canonical) parameters
log(scale) 2.400 11.027 0.029 0.000
log(shape) -1.437 0.238 0.065 0.000
Baseline mean: 15.2

Events 2449 TTR 45019
Max. Log Likelihood -9037 p-value 1

Table 3: Gompertz fit for men.
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Baseline (canonical) parameters
log(scale) 2.317 10.143 0.022 0.000
log(shape) -1.836 0.159 0.057 0.000
Baseline mean: 16.8

Events 2990 TTR 61791
Max. Log Likelihood -11156 p-value 1

Table 4: Gompertz fit for women.

Covariate Mean Coef Rel.Risk S.E. L-R p

sex 0.000
male 0.421 0 1 (reference)

female 0.579 -0.210 0.811 0.027

Events 5439 TTR 106810
Max. Log Likelihood -42906

Table 5: Results from an ordinary Cox regression (PH).

Covariate Mean Coef Risk Ratio S.E. L-R p

sex 0.000
male 0.421 0 1 (reference)

female 0.579 -0.210 0.811 0.027

Baseline parameters
log(scale) 2.352 10.502 0.018 0.000
log(shape) -1.544 0.214 0.046 0.000

Events 5439 TTR 106810
Max. Log Likelihood -20196

Table 6: Results from a Gompertz regression (PH).

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4421 0.0247 -17.91 0.0000

imr.birth 2.6706 0.6698 3.99 0.0001

Table 7: The effect of IMR at birth on SES at 50, men.
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Covariate Mean Coef Ext’d life S.E. L-R p

imr.birth -0.0013 -0.0431 0.9578 0.2588 0.8678
ses.50 -0.3889 0.0170 1.0171 0.0060 0.0052

Baseline (canonical) parameters
log(scale) 2.4064 11.0938 0.0302 0.0000
log(shape) -1.4327 0.2387 0.0679 0.0000
Baseline mean: 15.26

Events 2498 TTR 45181
Max. Log Likelihood -9230 p-value 0.02006

Table 8: The effect of IMR at birth and SES at 50 on survival after age 60, men.

Effect Coefficient lower 95% upper 95%

Direct -0.0431 -0.5503 0.4641
Indirect 0.0453 0.0113 0.0888

Total 0.0022 -0.4943 0.5094

Table 9: Direct, indirect (via SES at 50), and total effects of IMR at birth on old age mortality,
men.
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