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Abstract 

Using empirical fertility rates and population distributions, we study comparative 

contributions to births’ prediction errors of choices for the fertility model and of the 

approximation errors of three main fertility indicators (the total fertility, the mean and the 

standard deviation of age at birth, respectively: TFR, MAB, SDAB). Agreeing with theories 

of dynamic populations, we find high importance of accuracy of TFR and MAB. Yet, the role 

is limited in population projections of the estimates of SDAB and of the choice of the fertility 

model form. More attention may be paid in population projections to working out 

(interdependent) scenarios for TFR and MAB, while relaxing complexity of other aspects of 

fertility projection models. Our results suggest widening the uncertainty range for TFR in 

cases when the MAB projections are based on regressions on TFR or other simplified 

assumptions. 

 

1. Introduction. General considerations and motivation 

The period total fertility rate (TFR) is the prime, if not the only, fertility indicator commonly 

used in producing the population projection scenarios (Lutz & Scherbov 2004; Lutz et al. 
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2004; Alders & de Beer 2004, Alders et al. 2007; U.S. Census Bureau. 2008; Heilig et al. 

2010; Alkema et al. 2011; United Nations 2011; Eurostat 2011). The age distribution of 

fertility, usually, remains behind the scene and is rarely reported in the projection literature. In 

some applications, the age pattern of fertility is obtained by scaling up or down the baseline 

profile according the projected TFR levels; in others, the age pattern of fertility is linked, e.g., 

through regressions or model fertility curves, to the prime index, the TFR. Yet in other 

applications, the level (TFR) and age structure of fertility are forecasted by independent time 

series although theory suggests the two may be linked in processes of fertility postponement 

and anticipation. 

Such simplifications may work well for low-mortality, no-migration stationary 

populations where population sizes of fertile age groups are equal and any age profile of 

fertility rates produces the same number of births as long as TFR is fixed. In a population with 

n persons in each of the single-year fertile age groups, there will be TFR*n births each year. 

More realistically, population sizes of fertile age groups may vary substantially because of 

time-varying sizes of birth cohorts and effects of migration and mortality. Such irregular age 

profiles may produce differing numbers of births and projected populations when combined 

with fertility curves of the same total fertility but differing age patterns. 

Commonly, the age pattern of fertility rates is captured by the mean and the standard 

deviation of age at childbearing (MAB and SDAB, respectively) – indicators found important 

in fertility and population models. Some models of age-specific fertility involve three 

parameters, which may be linked to the TFR, MAB and SDAB (Mitra 1967; Mitra & 

Romaniuk 1973; Romaniuk 1973; Brass 1974, 1975, 1978; Booth 1984; Pollard & Valkovics 

1992; reduced models in Congdon 1993; Yi et al. 2000). Theories explaining the period 

fertility in terms of the share number and timing of births also point to the same set of 

indicators (theories by Ryder, 1951, and Bongaarts-Feeny, 1998, involve TFR and MAB; 

Kohler & Philipov, 2001, add the variance of age at birth). This accords to the models of 
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dynamic populations which also point to importance of MAB (but less so – of other aspects of 

fertility age profile) in long-term population change (Keyfitz 1971; Kim et al. 1991; Ediev 

2005, 2011). More complicated fertility models involving more than three parameters have 

also been proposed in the literature and shown to better fit the empirical fertility schedules 

(Coale & Trussell 1974; Hoem et al. 1981; Thompson et al. 1989; Congdon 1993, Chandola 

et al. 1999; Schmertmann 2003; Peristera & Kostaki 2007). 

Despite extensive literature on modeling and fitting the fertility curves, questions 

remain open of weather complicating the fertility model may improve projections or, more 

instructively, what is the relative contribution of model choice and parameterization into 

accuracy of projected births. With respect to alternative methods of fitting the parameters in 

the special case of Pearsonian Type I fertility curve, contributions to the births prediction 

errors were studied by Mitra and Romaniuk (1973). In their study, all alternative 

parameterization methods produced only minor prediction errors (fractions of the percent for 

the most of the years presented) on Canadian data. While this was an important hint to the 

possible role of the model choice in fertility projections, Mitra and Romaniuk did not cover 

models other than the Pearsonian Type I and did not consider parameterizations with 

imperfect values of the MAB.  

Our work aims to broaden understanding of the role of model choice and 

parameterization in fertility projections through a comparative analysis of importance of all 

three main fertility indicators in projecting the number of births. Model-wise, we consider 

several alternative fertility models of different sophistication levels. Using empirical 

population compositions and fertility rates, we study deviations of the predicted number of 

births from the empirical number under alternative models of the age pattern of fertility rates 

and for different approximations of the major fertility indicators. The recently launched and 

expanding Human Fertility Database (2012), HFD, provides vast empirical data base for our 

study. 
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In the next section, we present data, fertility models and prediction error indicators 

used in the study. Then, we present results for the prediction errors and conclude by 

discussion. 

 

2. Data and methods 

Appreciating the sensitivity of the projected number of births to accuracy of the TFR is 

straightforward. A one percent error in TFR, the age pattern of fertility being intact, would 

result in a similar one percent error in the projected number of births. Sensitivity to the 

deficiencies in the projected age pattern of fertility is, however, harder to study. Impact of 

such deficiencies depends not only on the extent of those deficiencies but also on the age 

composition of the population to which the fertility pattern is applied. In a population with a 

‘flat’ age pattern at fertile ages the accuracy of the fertility pattern (given TFR is fixed) hardly 

matters. On the contrary, in projecting a population with strongly skewed age composition 

applying the same TFR to younger or older cohorts at childbearing ages may produce 

different numbers of births. 

To explore this effect, we use the Human Fertility Database (2012), HFD, and 

simulate percentage errors of the predicted numbers of births assuming variety of typical 

model simplifications about the age pattern of fertility rates. As typical in projections, we only 

consider age aspect of fertility and not the parity or cohort aspects of it. Therefore, we use 

only the age profiles of period fertility rates and female population age compositions from the 

HFD. The database contains estimates for 1483 populations, some overlapping with each 

other, over long time period (starting in 1891 for Sweden but later for other populations). 

We apply to the empirical female population a model age profile of fertility rates, with 

TFR set at the empirical level, and see how far is deviating the imputed number of births from 

the empirical number. To shed the light on the role of the form of the fertility model, we use 

the following model age patterns of fertility rates,  xf  ( xF  in discrete form): direct 
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transformation of the empirical schedule; two variants of the Brass model; Schmertmann’s 

Quadratic-Spline model; the Gamma model; the Rectangular model; and the Ryderian 

pentapartite model. The models are described next. 

 

Model 1. Direct transformation of the empirical fertility schedule. 

First, we transform the empirical pattern  xf e  of fertility rates directly, according to the 

assumed model values of the MAB and SDAB: 

  






 


k

MABx
MABf

k
xf

e
e1

, (1) 

here superscript ‘e’ notes the empirical schedule and 
eSDAB

SDAB
k  . Multiplier ‘

k

1
’ before the 

empirical schedule assures identical TFR’s in the empirical and transformed schedules; in 

calculations, we use discrete approximation to (1) and slightly adjust the multiplier to match 

exactly the assumed TFR. Occasionally, the transformed rates may turn non-plausible when 

positive at ages beyond the fertile age limits. We overcome this problem by applying (1) only 

in the fertile age range and setting fertility rates zero outside that range. 

Indeed, there would be no known empirical schedule of future fertility rates to which 

to apply the transformation above in real-life population projections. Only in the short-range 

projections, when projected TFR, MAB and SDAB do not differ much from their baseline 

values, could one use the baseline profile as a basis for the transformation. Our next model 

addresses this problem. 

 

Model 2. Transformation of the regression-based fertility schedule. 

In this model, we emulate the realistic case when the empirical schedule is, in fact, unknown 

to the forecaster. Therefore, we approximate the baseline age pattern in (1) through a linear 

regression of age-specific fertility rates on the TFR and MAB: 
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MABcTFRbaF xxxx  , (2) 

where the regression coefficients are estimated over the entire database. Adding SDAB as a 

predicting variable in (2) does not improve noticeably the prediction efficiency of the 

regression. At the same time, dropping MAB from (2) reduces the fit (R
2
 averaged over all 

fertile ages drops from 65% to 39%). Once the baseline pattern (2) is set, we apply 

transformation (1) to fit the assumed values for TFR, MAB, and SDAB. 

 

Model 3. The Brass relational model with the empirical fertility schedule as the standard. 

The Brass relational model is a convenient method for transforming the baseline fertility 

pattern into a new (and plausible) set of fertility rates: 

  xxx TFRF  1 , (3) 
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parameters   and   determine MAB and SDAB.  

In our first version of the model, the empirical fertility schedule is used as the 

standard: 

e
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x
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0*
, 0

*

0  , (5) 

and use optimization procedure to find model parameters   and   producing the assumed 

MAB and SDAB. 
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Model 4. The Brass relational model with the regression-based standard. 

Our second variant of the Brass model is similar to the first variant, except the standard 

fertility profile is produced through linear regressions (2) and not taken directly from the 

empirical profile. 

 

Model 5. Schmertmann’s Quadratic-Spline model, QS. 

Parametric fertility models were found useful in many applications but also shown to fail 

capturing some aspects of empirical fertility. To see, how big might be the errors because of 

the parametric form of the model as well as due to deviations of the model parameters form 

their empirical values, we use four models: two sophisticated (Schmertmann’s (2003) 

Quadratic-Spline model, QS, and the following Gamma model) and two simplistic 

(Rectangular and Ryderian pentapartite models, come next after the Gamma model) ones. 

Details of the QS model may be found in (Schmertmann 2003). In brief, the model 

assumes three special points on the age scale: the youngest age at which fertility rises above 

zero ( ), the age at maximum fertility (P) and the youngest age above P at which fertility 

falls to half of its peak (H). The youngest age at positive fertility ( ) is set, as in 

(Schmertmann 2003), to constant level 15 in all our calculations. Hence, the model, 

effectively, is based on two parameters, P and H. the full age schedule of fertility rates is 

derived by fitting quadratic polynomials in between age ‘knots’, the knots being functions of 

the model parameters. The readers may refer to (Schmertmann 2003) for detailed calculation 

formulas. In our study, we use non-matrix calculation formulas (Appendix B in Schmertmann 

2003). Unlike in the original method, we use optimization procedures to find parameters P 

and H in order to fit exactly the assumed values for MAB and SDAB of the fertility schedule, 

and not to fit the entire schedule of the age-specific fertility rates. Once the schedule is found 

that matches assumed MAB and SDAB, we scale the schedule up or down in order fit exactly 

the assumed level of the TFR. 
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Model 6. The Gamma model. 

In the Gamma model, 

 
     442

1

421

3

,exp
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33 

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



xxxFx , (6) 

where i , 4,1i , are model parameters and    


 
0

1 exp duuup p . This model is 

convenient for our and other applications in possibility to derive the model parameters from 

substantive demographic considerations. Unlike in other works, where the parameters were 

selected to fit the whole age pattern of fertility rates, we select the parameters so that to 

reproduce exactly the key fertility indicators (TFR, MAB, and SDAB). To this end, we use 

the following relations: 

TFR1  (7) 

(in practice, there is slight upward adjustment to this parameter, to compensate for two 

missing tails of the Gamma curve that fall beyond reproductive ages), 

MAB
2

3
4




 , (8) 

  SDAB
2

2

3




. (9) 

Relations (7)-(9) impose three restrictions on four parameters of the model. Given, for 

example, the value of the minimum age 4  of the Gamma curve, all other parameters may be 

derived analytically. Therefore, the task of fitting the model to the assumed fertility schedule 

is reduced to choosing a single parameter 4 , for which we use a simplified approximation 

04  . (10) 

This assumption is supported by research  showing the parameter turns zero after around 

1980s in low-fertility countries (Thompson et al. 1989, Keilman & Pham 2000). Although, 

this might not be the best solution in higher-fertility contexts, our study shows the choice for 
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4  is of low importance in population projections when compared with the impact of the 

choice for other parameters. Given (10), one can use closed-form analytical expressions for 

the other parameters of the model: 

22
SDAB

MAB
 , (11) 

  

2

3 









SDAB

MAB
 . (12) 

These relations allow deriving the model age structure of fertility rates from the projected 

TFR, MAB, and SDAB.  

 

Model 7. The Rectangular model. 

The Rectangular, as well as the following Ryder’s, model serve as examples of an ‘extreme-

crude’ model of the age pattern of fertility rates. It is based on assuming age-independent 

fertility in age range  bax ,  and zero fertility outside the range: 

  
 

 












,,,0

,,,

bax

bax
ab

TFR

xf  (13) 

where SDABMABa 3  and SDABMABb 3  are set to match the assumed MAB and 

SDAB. 

 

Model 8. Ryder’s (pentapartite) model. 

Studying possibility to forecast births using cohort-period translation of fertility rates, Ryder 

(1989) proposed a ‘tetrapartite’ model, where fertility rates are all set zero except at four 

equally-distanced ages (Ryder suggests, in particular, to use ages 17.5, 24.5, 31.5, and 38.5 

for that purpose). As rough as it is, the model showed good results in translating the period 

TFR and MAB from first three moments of the cohort fertility function. Our calculations, 

however, showed that the model produces high prediction errors, when compared with other 
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alternatives; better results are produced when increasing the number of ages with non-zero 

fertility. Here, we present results for the pentapartite model where fertility rates are all zero 

except at five equally spaced ages 17.5 to 37.5. This model, having errors (ca. 1.88 percent in 

the number of births) moderately higher than the best Ryderian alternative (an octopartite 

model with eight parameters and ca. 1.38 percent errors) but lower than the Ryder’s 

tetrapartite (errors ca. 2.62 percent), provides a good tradeoff between the prediction errors 

and the number of parameters. Another difference of our work to the original Ryder’s 

approach is that we do not consider moments of the age distribution of fertility rates except 

for the first two (corresponding to MAB and SDAB, respectively), because of small 

contribution of higher-order moments into the prediction accuracy. So, our Ryderian model 

assumes non-zero fertility only at ages 17.5, 22.5, 27.5, 32.5, and 37.5 (mid-points of 

corresponding single-year-long age intervals). Fertility rates at those ages are selected to fit 

the assumed values for TFR, MAB, SDAB, and, to improve the robustness of the procedure, 

to minimize the sum of squares of the rates. 

 

As well described in the literature (see the introduction), the seven models used here 

do not exhaust the options for the models of the fertility curve. Yet, our choice covers wide 

range of model complexity and includes some commonly used and convenient models. Usage 

of the method of moments for parameterizing the fertility models is simpler than the usual 

fitting to the empirical age-specific rates (assuming those rates are known). Its ability to 

reproduce exactly the assumed TFR, MAB, and SDAB is convenient in projections (when 

there is no, in fact, a known empirical schedule to which to fit the model) and in our study of 

errors arising from deviation of model fertility parameters from their true values. 
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Indicators of the prediction error 

Our indicator of prediction accuracy is the mean squared relative error (MSRE) of the 

predicted number of births: 
















 


N

i i

ii
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N
MSRE

1

2
ˆ1

, (14) 

where iB  and iB̂  are the benchmark and predicted numbers of births obtained by applying the 

exact and the approximate fertility rates, respectively, to population ‘i’; 1483N  is the total 

number of populations in the HFD. This indicator in convenient in possibility to compare it, 

one-to-one, to the errors induced by the biases in the TFR (a one per cent bias in TFR 

produces a similar error in the projected number births). 

When the approximate schedule comes from (relational) models one through three, the 

benchmark iB  is simply the empirical number of births from HFD in respective population.  

For all other (parametric) models we use two benchmark numbers of births: the 

empirical one and the one generated by the same model when TFR, MAB and SDAB are set 

at their empirical values. The first benchmark yields errors combining contributions from 

limitations of both the model form and model parameterization. The second benchmark yields 

errors associated only with the choice of the fertility parameters and not with the inability of 

the model to reproduce peculiarities of the empirical fertility pattern.  

The models’ own errors are estimated by comparing the empirical numbers of births to 

those produced by the models under true values for TFR, MAB, and SDAB (in this definition, 

models 1 and 3 have null own errors). Note that own errors of models (except models 1 and 3) 

also include errors due to neglect of the higher-than-two-order moments of the fertility age 

pattern. 
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Models’ parameterization 

In our calculations, the TFR is always set at its empirical level, but MAB and SDAB vary 

according the following choices:  

 the exact empirical value from the HFD;  

 the average over all HFD populations (27.7 and 5.56 years for the MAB and SDAB, 

respectively);  

 country-specific average, over HFD data for relevant population only;  

 linear regression-based approximation with the TFR used as the predictor (regressions 

are fit over the whole HFD):  

TFRMAB  63.04.26 , R
2
=6 percent,  

TFRSDAB  55.042.4 , R
2
=44 percent; 

 country-specific linear regressions with the TFR used as the predictor (R
2
 averaged 

over all HFD populations is 15 percent for MAB and 43 percent for the SDAB; those 

statistics vary substantially form population to population). 

 

3. Results 

Mean squared relative errors 

MSRE’s estimated for different models and parameterizations are presented in Table 1. For a 

reference, the table also features the mean squared annual change of TFR (4.23 percent), 

which could be useful to compare the MSRE’s to.  

 

Table 1 around here. 

 

All selected fertility models, even the cruder Rectangular and Ryderian models, 

produce similar errors at similar choices for the fertility parameters when the models are 

assessed vs. their own best parameterizations. This suggests that errors induced by 
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approximations to the main fertility parameters may be nearly independent of the fertility 

model form. 

When compared to the empirical numbers of births models’ own errors also contribute 

to MSREs. The Rectangular model and the Ryderian pentapartite, in particular, perform 

considerably worse than other models. Models’ own errors (last but one row of the table) 

mount to 0.42 percent (regressions-based fertility profiles of Model 2), 0.51 percent (the Brass 

model with regressions-based standard), 0.57 percent (Schmertmann’s QS model), 0.72 

percent (the Gamma model), 1.56 percent (the Rectangular model), and 1.88 percent (the 

Ryderian pentapartite model).  

When compared to these natural reference levels, all models perform well when the 

true MAB is known but SDAB is approximated (in other words, uncertainty in SDAB does 

not substantially worsen the prediction errors as compared to the models’ own errors). Even 

substituting the true SDAB by the average over the entire HFD produces good predictions: the 

corresponding MSRE’s differ substantially from the models’ own errors only for the models 

with low errors (the relational models and the QS). Even better estimate for SDAB is the one 

based on country-specific regression on TFR (adding MAB as an explanatory variable slightly 

improves the results; yet, we do not consider that model here). Given true MAB values, 

prediction errors because of both the model structure (except for the Rectangular and 

Ryderian models) and parameterization deficiencies are of a smaller order of magnitude than 

the annual variation in TFR. Therefore, model choice or extra knowledge about SDAB would 

hardly matter in projection exercises with uncertain TFR. 

Imperfect estimates of MAB, including the regressions on TFR, produce errors 

exceeding the models’ own errors by more than twice (except for the Rectangular and 

Ryderian models with large own errors) and of the size comparable to the uncertainty in TFR. 

Because of weak association between the MAB and TFR, even on a country-specific basis, 

the regression-based MAB’s produce results not much better than the averages-based 
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approximations. As yet another reference for the first five models, one may use the projection 

errors of the cruder Rectangular and Ryderian model (1.56 and 1.88 percent, respectively): 

lack of knowledge about MAB produces nearly as high errors as those produced by reduction 

of the fertility age pattern into a simple rectangular shape or a set of five ages with non-zero 

fertility. 

Once the knowledge about MAB is lost, accuracy of SDAB does not matter anymore 

(according to our rough assessments above, MSRE’s for similarly approximated MAB’s but 

different assumptions for the SDAB are not significantly different). Projections based on 

estimated MAB but true values for SDAB are occasionally even worse than the projections 

based on the estimated values for both parameters. This puzzling result may indicate that once 

MAB deviates from its true value, use of true SDAB’s may worsen the accuracy of the 

projection by introducing extra source of fluctuation of the outcome compared to using more 

stable estimated SDAB’s. 

When choosing between the models, any one of them, except for the Rectangular and 

the Ryderian models, produce acceptable results, the simplest transformation models being, 

surprisingly, the best ones. Also notably, the Schmertmann’s QS model, with the same 

number of parameters but somewhat more stylized age pattern, is substantially better-off than 

the Gamma model. In births prediction accuracy, the QS model is closer to the relational 

models. 

Our observations are supported by distributions of prediction errors of the fertility 

models under alternative parameterizations (see histograms of relative percentage errors, with 

the empirical births used as benchmarks, for models except for Models 1 and 3, in Figure 1). 

As seen from the histograms, lack of knowledge about SDAB and even the model choice 

(except for choosing the Rectangular and Ryderian models) hardly matter for the prediction 

accuracy, while better MAB’s do make a difference. Fertility rates estimated by transforming 

the baseline fertility schedule (obtained, in its turn, from regressions on TFR) perform better 
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both in MSRE’s and as having less pronounced tails of the errors’ distribution. When 

compared to the respective normal distributions, errors of most of the models show large 

excess kurtoses (shown on the plots). This may be explained, in part, by a combination of two 

effects. First, prediction errors are low, at any choice for the MAB and SDAB, for populations 

with relatively ‘flat’ (age-independent) age composition at fertile ages. These populations 

contribute to the peak around zero value in the errors’ distribution (a closer examination also 

shows that errors decline even faster when the population gets closer to a ‘flat’ age 

composition at fertile ages). Second, the prediction errors decline faster when the model 

parameters get closer to their empirical values (we observe that this is true when MAB gets 

closer to its empirical value; but the same is not true for SDAB). Both these causes increase 

the number of almost-the-perfect-fit cases at the expense of only-a-good-fit ones. 

 

Figure 1 around here. 

 

Autocorrelations 

For projections that are usually done for a set of consecutive years, it is important not only to 

know the magnitude of the errors in predicting the number of births in a single year, but also 

to know, if the errors cumulate over time or, rather, compensate each other if random and 

uncorrelated. Since HFD contains, for each population, data for rather long time series, we 

can study the autocorrelations between prediction errors in years t and t+1 empirically. 

Empirical autocorrelations estimated for each HFD population and averaged over all 

populations are presented in Table 2.  

Errors induced by biases in MAB are not only higher in their magnitude; they are also 

tighter correlated for adjacent projection years. In other words, projection errors due to 

mistaken values of MAB cumulate stronger than the errors because of mistakes in SDAB or 

limitations in the model structure. In table 2, we also present autocorrelations for lag of two 
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years. These autocorrelations also show that errors due to unknown MAB cumulate stronger 

than those due to unknown SDAB or limitations of the model structure. Autocorrelations at 

lag of two years are substantially lower than the squared autocorrelations for the lag of one 

year and indicate that errors cumulate slower than in an AR(1) process. 

Substantially lower autocorrelations for errors of the Ryderian model may be 

explained by pronounced short-term variation of the errors due to the concentration of model 

fertility into five selected ages. Such a concentration augments impact of short-term age-to-

age variation in the population size. It does not, however, lead to lower accumulation of errors 

over a long time, as we see next. 

 

Table 2 around here. 

 

Projection errors accumulated over one generation 

Our next indicator concerns the prediction errors for births cumulated over time horizon of 

about one generation length (which we take for 27 years), a characteristic time block in 

population projections. We calculate this indicator as the mean squared value of relative 

prediction errors averaged over 27 years; all country-specific 27-year-averages are pooled 

together. These estimates are presented in Table 3 and Figure 2 features the histograms.  

Not surprisingly, in view of the previous results, imperfect estimates for MAB produce 

higher errors in long-run projections than imperfect estimates of SDAB: relative errors of 

about 0.8 and 0.2 percent, respectively, for the best-guess MAB and SDAB. For a reference, 

the models’ own errors cumulate to about 0.2 percentage points in one generation (excluding 

the Rectangular and Ryderian models with cumulated errors of about 0.4 percent). Unlike in 

the short-run, where errors due to imperfect MAB are close to those due to lack of model 

flexibility, long-run errors caused by approximated MAB are more than twice the own errors 

of the cruder Rectangular and Ryderian models. 
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Due to demographic renewal, these errors will cumulate further in the long-run: having 

projected too high or too low number of births to one generation will change accordingly the 

size of the parental generation and top up errors for the next generation. 

As compared to the effect of assuming imperfect MAB’s, the model choice hardly 

matters in the long run: even the crude Rectangular and Ryderian pentapartite models yield 

results similar to other models. 

 

Table 3 around here. 

Figure 2 around here. 

 

4. Conclusions and implications for projection practices 

The above results provide a clear answer to our main research question on relative importance 

of different ingredients of fertility modeling in population projections. While accuracy of TFR 

and MAB are highly important for accurate prediction of births, fertility model family 

(assuming, the model is not too rough) and accuracy of SDAB as well as of higher-order 

moments have lower impact on projection outcomes. 

Lack of knowledge about MAB produces projection errors mounting up to 2.5 cent in 

a single year or 1.3 percent when births are cumulated over a generation. That is comparable 

to TFR’s mean squared annual change of 4.2 percent in HFD data. Country-specific 

regression of MAB on TFR may improve projection results (bringing the errors down to 1.5 

and 0.8 percent on annual and generation bases, respectively). Yet, the correlation between 

TFR and MAB is so weak, that nearly the same results are obtained by simply setting the 

MAB to the country-average of the indicator over past data. Given usually high smoothness 

and inertia of the MAB’s temporal change, using the last observed MAB, an average over the 

recent data, or extrapolating the recent trend may be efficient in short- and medium- run 

projections.  
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Uncertainty in SDAB, on the contrary, has rather small effect on projection outcomes, 

when compared to effects of TFR or MAB uncertainty. When estimated from country-specific 

regression on TFR, inaccuracy of projections of SDAB contribute only about 0.4 percent 

errors to annual number of births or 0.2 percent over a generation. These numbers match very 

well the prediction errors (fractions of a percent, for the most of the years reported) found by 

Mitra and Romaniuk (1973) for the Pearsonian Type I fertility models with exact values for 

TFR and MAB. Prediction errors due to uncertain SDAB are of about the same as errors 

induced by the model structure and is lower in order of magnitude as compared to annual 

variation of TFR. When the MAB is not set at its empirical value, knowledge on SDAB does 

not improve the prediction accuracy consistently. Even more, when MAB is estimated from 

rougher models (HFD-average or HFD-regression over TFR), adding true SDAB to the model 

worsens the short-term prediction accuracy in most of the cases. This result may indicate that 

once the MAB is flawed, ‘true’ SDAB’s only add uninformative random variation to the 

predictions. When the MAB is better known, however (at least, estimated from country-

specific averages or regressions), and also in the long-run forecasts, better SDAB’s may 

marginally improve the prediction accuracy. That marginal gain in accuracy, however, would 

not be sizable as compared to TFR’s annual variation. 

Similarly, there is relatively small impact of the model choice (and, implicitly, of the 

higher-order fertility moments neglected in our study) on the projection outcomes. That 

choice would only make sizable difference when MAB would be known exactly. Even the 

crudest, Rectangular and Ryderian pentapartite, models produce errors (about 1.8 percent in 

the short-run, 0.4 percent over a generation) not exceeding those due to imperfect estimates of 

MAB. All other models’ own errors are even smaller and close to each other (about 0.5 

percent in the short-run and 0.2 percent over a generation). That said, there are considerable 

differences in models’ accuracy and complexity. Interestingly, our simplest adjustment 

procedure (Model 2) produces the lowest prediction errors (0.4 percent and 0.19 percent in a 
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year and over a generation, respectively). Although some models show marginally smaller 

mean squared errors in the long-run, distributions of the errors (Figure 2) suggest this may be 

due to an uncontrolled selection of the HFD collection of population dynamics. It may be 

suggested that fertility projections to be based on simple models, such as the transformation 

(direct or Brass), QS, or Gamma models. In actual projections, one may improve over our 

roughly assessed standard fertility profiles in Models 2 and 4. This may further lower the 

prediction errors of the transformation methods. One may also consider a convenient 

combination of different approaches, when the ‘fertility standard’ is obtained by one method 

(e.g., extrapolation of age-specific rates, of the QS or Gamma model’s parameters, etc.) and 

then is transformed by our simple transformation method (as in Models 1, 2) in order to assure 

exact match to the projected MAB. Such a two-step procedure may, in particular, allow 

avoiding the resources-consuming optimization procedures in models such as the Brass, QS, 

or Ryderian models. 

All in all, our results have convenient implications for forecasting. One may focus on 

formulating assumptions for the two key fertility indicators (TFR and MAB) only and pay 

less attention to other fertility indicators and even to the choice of the model form. Yet, the 

link between TFR and MAB in processes of fertility postponement and anticipation, but also 

the remaining need of better theories describing the link (Ní Bhrolcháin 2011) indicate that 

these parameters may not be projected independently and easily. More research is needed on 

tempo effects on period fertility and on relations between changes in TFR and MAB. 

Indeed, in many projections, especially in the long-run, assumed uncertainty about 

TFR would exceed its year-to-year change. UN (2011), for example, assumes about 

±10 percent range of TFR in the short-run and about ±25 percent range in the long-run (the 

half-distance between high and low variants as percent of the medium variant). Assuming 

those ranges cover 95 percent of TFR’s expected variation, UN assumptions match to about 5 

percent and 12 percent standard errors in projected TFRs in the short- and long-run, 
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respectively. Alders and de Beer (2004) report roughly similar ranges for errors of official 

TFR forecasts. Compared with these levels of uncertainty in TFR, long-term effects of 

imperfect predictions of other fertility indicators (even of MAB, but definitely so of SDAB 

and of the model family) may be neglected in long-term deterministic projections. In the 

short-run, however, errors due to imperfect MAB may still be large to neglect. Also in the 

long-run stochastic projections, the relative impact of imperfectness in MAB assumptions 

may be substantial if effects on population of stochastic annual variations of TFR are 

averaged and smoothed out.  

In deterministic projections, the effects may be further reduced, in the long run, when 

scenario-based age structures get smoother over time or even converge to a stationary 

population. Yet, in the short- and medium- run when the effects of original age structure 

prevail, or in cases when the population asymptotic is not stationary, the projection errors may 

be as high as reported here. Only in the very long-run and assuming replacement-level 

fertility, the alternative age patterns of fertility rates may produce similar projected population 

dynamics. However, there will be substantial cumulated error affecting the total projected 

population size by that time. 

The effect of smoothing age composition will not apply to stochastic projections, 

where the age composition remains non-stationary along any single random trajectory. 

Therefore, improving the MAB forecasts or taking the effect of uncertain MAB into account 

may be an important ingredient of stochastic population projections. A crude way to adjust the 

stochastic model in the case of uncertain fertility structure may be suggested by errors 

presented in Table 1 as compared with the TFR’s annual change. One may widen the range of 

uncertainty of TFR (as compared to what is suggested by a time-series analysis) by about six 

percent when MAB is approximated roughly (e.g., set constant or linked to TFR) (explanation 

for the adjustment based on the numbers for Model 4: 06.1
23.4

48.123.4 22

 ). 
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The cohort approach may provide an interesting way out of the problems due to 

imperfect parameterization of fertility model. Assuming low mortality at childbearing ages, 

cohort age composition may be assumed flat within childbearing ages. Therefore, in modeling 

births to cohorts, there would be no need to care about the (usually volatile and uncertain) age 

structure of cohort fertility as long as the cohort completed fertility is well predicted. Given 

higher stability of cohort completed fertility compared with the period TFR, projections of the 

numbers of births to cohorts may be more reliable than usual projections based on period 

fertility. Unfortunately, this method leaves questions unanswered about timing of births, i.e., 

about to which calendar years to assign the births to the cohorts. In the short-run, imperfect 

allocations of births may lead to the same levels of prediction errors as reported here. Those 

errors may not, however, cumulate over time. In the case when cohort’s net reproduction rate 

is close to one, for example, Ediev (2005, 2007) shows the births’ number is inversely 

proportional to the concurrent MAB; in this case, uncertainty in MAB in one period does not 

contribute to uncertainty in births in the following periods, as long as the cohorts’ 

reproduction is forecasted correctly. Technically, the cohort approach in population 

projections may be realized by developing the cohort fertility assumptions and translating 

them into period fertility rates. Ryder (1989, 1990) proposed a simple method of translation 

using the tetrapartite fertility model. Our results suggest, however, that this model and even its 

more complicated versions may be too imprecise in projecting births. Nonetheless, one may 

use other models, e.g., the Gamma model, to resolve the translation problem along the lines 

suggested by Ryder. 

Our findings may also be of interest in developing the models for fertility 

reconstruction and decomposition. For the lack of better assumptions, those models used to be 

based on rather simple age patterns of fertility rates (e.g., Lee 1974, 1985). Our results, also 

supported by theory (Ediev 2011), suggest these models may be improved by better account 

for changes in MAB in addition to modeling the change in TFR. Like in the projections, 
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however, other aspects of the fertility model may be simplified in reconstructions and 

decompositions without substantial consequences for the accuracy of estimates. 
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Table 1. Mean squared relative errors of the projected annual number of births for fertility schedules generated at different combinations of the 

basic parameters, for selected model schedules, percent. 

MAB  

approximation 

SDAB  

approximation 

Direct 

transformation 

of the fertility 

schedule 

Transformation of 

the regressions-

based fertility 

schedule vs data 

Brass model 

(empirical 

standards) 

vs data 

Brass model 

(regression-based 

standards)  

vs data 

Schmert-

mann’s 

QS model 

vs data 

Gamma 

model 

vs data 

Rectangular 

model  

vs data 

Ryderian 

model  

vs data 

 

exact value grand average 0.57 0.79 0.61 0.90 0.88 0.92 1.75 1.95  

exact value country average 0.46 0.65 0.50 0.76 0.80 0.86 1.61 1.92  

exact value regression 0.45 0.63 0.47 0.71 0.72 0.84 1.68 1.94  

exact value country regression 0.32 0.51 0.34 0.60 0.64 0.78 1.59 1.91  

grand average exact value 2.31 2.49 2.43 2.50 2.54 2.59 2.85 3.07  

country average exact value 1.51 1.66 1.62 1.66 1.75 1.80 2.19 2.48  

regression exact value 2.17 2.35 2.30 2.36 2.45 2.49 2.70 2.97  

country regression exact value 1.30 1.47 1.40 1.48 1.55 1.63 2.06 2.36  

grand average grand average 2.19 2.42 2.35 2.45 2.44 2.54 2.84 3.04  

country average country average 1.51 1.69 1.66 1.71 1.79 1.84 2.21 2.51  

regression regression 2.10 2.30 2.26 2.31 2.37 2.46 2.72 2.98  

country regression country regression 1.29 1.47 1.42 1.48 1.54 1.64 2.08 2.38  

exact value exact value - 0.42 - 0.51 .57 0.72 1.56 1.88  

TFR’s mean squared annual change (%) 4.23         
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Table 1 [continuation]. Mean squared relative errors of the projected annual number of births for fertility schedules generated at different 

combinations of the basic parameters, for selected model schedules, percent. 

MAB  

approximation 

SDAB  

approximation 

Schmertmann’s QS 

model vs best-fit 

QS model 

Gamma model  

vs best-fit 

Gamma model 

Rectangular model  

vs best-fit 

Rectangular model 

Ryderian model  

vs best-fit  

Ryderian model 

exact value grand average 0.66 0.51 0.74 0.74 

exact value country average 0.55 0.41 0.65 0.64 

exact value regression 0.51 0.40 0.57 0.55 

exact value country regression 0.38 0.29 0.44 0.43 

grand average exact value 2.46 2.25 2.23 2.17 

country average exact value 1.63 1.50 1.48 1.49 

regression exact value 2.33 2.11 2.08 2.04 

country regression exact value 1.42 1.28 1.26 1.27 

grand average grand average 2.35 2.20 2.25 2.20 

country average country average 1.66 1.54 1.66 1.63 

regression regression 2.24 2.09 2.12 2.08 

country regression country regression 1.40 1.30 1.38 1.33 

exact value exact value - - - - 
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Table 2. Autocorrelations between errors of estimating the number of births for fertility schedules generated at different combinations of the basic 

parameters (presented numbers are averages over country-specific autocorrelations) [continued on the next page] 

MAB 

approximation 

SDAB 

approximation 

Direct 

transformation of 

the fertility 

schedule 

Transformation of the 

regressions-based 

fertility schedule vs 

data 

Brass model 

(empirical 

standards)  

vs data 

Brass model 

(regression-based 

standards) vs 

data 

Schmertmann’s 

QS model vs data 

Gamma model 

vs data 

  
lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

exact value grand average .954 .839 .950 .825 .956 .843 .947 .811 .943 .794 .948 .808 

exact value country average .947 .820 .945 .806 .948 .820 .941 .790 .936 .775 .944 .793 

exact value regression .939 .801 .935 .784 .940 .809 .931 .767 .935 .781 .938 .778 

exact value country regression .906 .732 .922 .755 .900 .724 .919 .739 .923 .759 .934 .763 

grand average exact value .974 .907 .973 .901 .973 .900 .972 .900 .968 .882 .969 .883 

country average exact value .966 ..880 .967 .883 .966 .878 .967 .883 .962 .860 .962 .858 

regression exact value .972 .903 .973 .901 .972 .899 .973 .901 .968 .881 .968 .882 

country regression exact value .952 .848 .962 .867 .953 .847 .962 .867 .959 .852 .956 .844 

grand average grand average .976 .914 .974 .907 .974 .909 .974 .906 .968 .882 .970 .890 

country average country average .970 .897 .972 .902 .971 .898 .972 .900 .967 .878 .965 .871 

regression regression .972 .902 .972 .900 .970 .895 .972 .900 .966 .875 .968 .882 

country regression country regression .955 .857 .962 .872 .955 .854 .962 .873 .960 .859 .957 .849 

Models’ own errors - - .921 .736 - - .917 .720 .931 .763 .933 .749 

TFR’s annual change .398 .258           
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Table 2 [continuation]. Autocorrelations between errors of estimating the number of births for fertility schedules generated at different 

combinations of the basic parameters (presented numbers are averages over country-specific autocorrelations) 

MAB 

approximation 

SDAB 

approximation 

Rectangular model  

vs data 

Ryderian model  

vs data 

Schmertmann’s 

QS model vs 

best-fit QS model 

Gamma model  

vs best-fit Gamma 

model 

Rectangular model 

vs best-fit 

Rectangular model 

Ryderian model  

vs best-fit  

Ryderian model 

  
lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

lag 1  

year 

lag 2  

years 

exact value grand average .938 .775 .511 .064 .948 .814 .960 .857 .905 .726 .906 .743 

exact value country average .936 .767 .508 .042 .938 .789 .953 .836 .879 .665 .891 .706 

exact value regression .930 .748 .511 .047 .933 .790 .944 .822 .902 .719 .893 .718 

exact value country regression .930 .746 .506 .029 .889 .699 .906 .744 .855 .618 .850 .626 

grand average exact value .956 .840 .702 .402 .969 .889 .975 .910 .953 .848 .946 .858 

country average exact value .946 .803 .647 .293 .963 .867 .971 .896 .944 .826 .942 .841 

regression exact value .956 .842 .702 .412 .968 .887 .974 .908 .951 .845 .947 .858 

country regression exact value .943 .795 .629 .258 .951 .837 .957 .862 .925 .783 .930 .815 

grand average grand average .960 .855 .707 .419 .969 .892 .977 .918 .952 .842 .937 .836 

country average country average .952 .824 .651 .305 .968 .887 .975 .913 .939 .810 .930 .813 

regression regression .959 .851 .718 .443 .966 .883 .973 .905 .954 .850 .942 .846 

country regression country regression .946 .806 .638 .275 .953 .848 .959 .870 .929 .791 .926 .807 

Models’ own errors .925 .732 .494 .010 - - - - - - - - 

TFR’s annual change             
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Table 3. Mean squared relative errors of projected number of births cumulated over 27 years for fertility schedules generated at different 

combinations of the basic parameters, for selected models, percent 

MAB  

approximation 

SDAB  

approximation 

Direct 

transformation 

of the fertility 

schedule 

Transformation 

of the regressions-

based fertility 

schedule vs data 

Brass model 

(empirical 

standards)  

vs data 

Brass model 

(regression-based 

standards) vs 

data 

Schmert-

mann’s 

QS model 

vs data 

Gamma 

model  

 vs data 

Rectangular 

model  

vs data 

Ryderian 

model  

vs data 

 

exact value grand average 0.26 0.39 0.28 0.45 0.38 0.37 0.59 0.47  

exact value country average 0.23 0.30 0.25 0.34 0.34 0.32 0.48 0.44  

exact value regression 0.20 0.27 0.21 0.30 0.29 0.28 0.46 0.40  

exact value country regression 0.16 0.20 0.18 0.23 0.26 0.25 0.39 0.38  

grand average exact value 1.20 1.26 1.22 1.25 1.28 1.23 1.30 1.26  

country average exact value 0.86 0.93 0.89 0.92 0.95 0.91 0.91 0.91  

regression exact value 1.23 1.30 1.27 1.29 1.33 1.28 1.33 1.30  

country regression exact value 0.78 0.86 0.81 0.85 0.89 0.84 0.84 0.83  

grand average grand average 1.24 1.34 1.29 1.34 1.35 1.31 1.38 1.32  

country average country average 0.94 1.02 0.99 1.02 1.04 1.01 1.03 1.03  

regression regression 1.25 1.32 1.30 1.31 1.36 1.31 1.36 1.33  

country regression country regression 0.80 0.87 0.85 0.87 0.90 0.87 0.87 0.87  

exact value exact value - 0.19 - 0.24 0.19 0.18 0.42 0.35  

 



 29 

Table 3 [continuation]. Mean squared relative errors of projected number of births cumulated over 27 years for fertility schedules generated at 

different combinations of the basic parameters, for selected models, percent 

MAB  

approximation 

SDAB  

approximation 

Schmertmann’s QS 

model vs best-fit QS 

model 

Gamma model  

vs best-fit  

Gamma model 

Rectangular model  

vs best-fit 

Rectangular model 

Ryderian model  

vs best-fit  

Ryderian model 

exact value grand average 0.30 0.25 0.32 0.30 

exact value country average 0.27 0.22 0.27 0.28 

exact value regression 0.22 0.19 0.23 0.21 

exact value country regression 0.19 0.16 0.22 0.19 

grand average exact value 1.24 1.18 1.17 1.17 

country average exact value 0.90 0.85 0.85 0.85 

regression exact value 1.28 1.22 1.22 1.23 

country regression exact value 0.83 0.76 0.75 0.76 

grand average grand average 1.30 1.24 1.24 1.23 

country average country average 0.98 0.94 0.97 0.98 

regression regression 1.30 1.25 1.26 1.26 

country regression country regression 0.84 0.79 0.81 0.82 

exact value exact value - - - - 
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Figure 1. Histograms and corresponding normal distributions for relative prediction errors, selected fertility models (columns 1 to 5: models 2, 4-8), 

in percent. Rows 1 to 4: MAB and SDAB set at their empirical values; MAB’s are empirical and SDAB’s are from regression on TFR; SDAB’s are 

empirical and MAB’s are from regression on TFR; both parameters are from regression on TFR. All regressions are country-specific. Errors are 

computed vis-à-vis empirical births. “e“ stands for the Mean Squared Relative Error; “ku” stands for the excess kurtosis. 
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Figure 2. Histograms and corresponding normal distributions for relative prediction errors averaged over periods of 27 years, selected models 

(columns 1 to 5: models 2, 4-8), in percent. Rows 1 to 4: MAB and SDAB set at their empirical values; MAB’s are empirical and SDAB’s are from 

regression on TFR; SDAB’s are empirical and MAB’s are from regression on TFR; both parameters are from regression on TFR. All regressions are 

country-specific. Errors are computed vis-à-vis empirical births. “e“ stands for the Mean Squared Relative Error; “ku” stands for the excess kurtosis 


