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Abstract

Sub-national estimates of under-5 mortality are useful for evaluating within-country inequality,
tracking progress, and identifying areas of greatest need. We estimate under-5 mortality for each
of Zambia’s 72 districts annually 1980-2010, using summary birth history data from censuses and
complete birth history data from Demographic and Health surveys to fit a series of small area
models. We consider a variety of generalized linear mixed models that differ in how spatial trends,
temporal trends, and spatial-temporal interactions are introduced. All models suggest considerable
heterogeneity in levels of under-5 mortality, with the worst off districts experiencing mortality
risks 2-3 times as great as those in the best off districts. Distinct spatial trends are also apparent:
districts in the northeast and southwest experience noticeably higher mortality than districts in the
central part of the country. Progress in decreasing mortality over the past 30 years has also been
variable: while there is some evidence of decline in most districts, our models suggest that a subset
of districts have experienced decreases in mortality exceeding 50%.

1 Background

Over the period from 1980 to 2010 under-5 mortality (the probability that a child will die before
reaching age five) dropped in Zambia by nearly 40% from 164 to 100 deaths per 1,000 live births [1].
Little is known, however, about how levels and trends in child mortality vary within Zambia. Esti-
mation of under-5 mortality in Zambia is difficult as there is no vital registration system to collect
information on deaths. National estimates are instead based on survey data in the form of birth
histories where women are interviewed about the mortality experience of their children. While birth
history data are widely used in countries like Zambia to estimate mortality at a national level, there
are relatively few instances where they have been used to estimate mortality at a subnational level
due primarily to concerns about small sample sizes. As a consequence, existing subnational esti-
mates derived from birth histories have tended to rely on census data [2–4] where sample size is less
of a concern, or have analyzed relatively coarse sub-national units (e.g., provinces or regions) [3,5].

Small area methods are statistical methods which address the issues raised by small sample
sizes by explicitly accounting for the large sampling variance and exploiting spatial and tempo-
ral relatedness to increase predictive power. Although these methods have seen extensive use in
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Table 1: Sample size (number of women) for each data source.

Source Total Median (Minimum - Maximum)

1990 Census 1,730,778 26,842 (3,692-204,557)

2000 Census 2,189,309 23,212.5 (3,799-277,404)

2010 Census 3,002,791 28,741.5 (5,253-477,915)

1992 DHS 7,060 89.5 (24-962)

1996-97 DHS 8,021 116 (20-876)

2001-02 DHS 7,658 -

2007 DHS 7,146 76 (12-483)

epidemiology and other fields, they have only infrequently been applied to birth history data on
mortality and, even then, the focus has usually been on the relationship between socioeconomic or
environmental factors and the risk of death, not prediction of under-5 mortality or other similar
childhood mortality indicators [6–12]. In fact, mortality data pose several unique challenges in the
context of small area methods. Most small area methods used in epidemiology are designed to
work with count data; under-5 mortality, the most common indicator of childhood mortality, is a
complex construct, however, not a simple count. Further, in order to derive estimates of under-5
mortality from certain types of birth history data, demographic models must be employed, adding
an additional modeling step.

In this paper we present a method of combining birth history methods and small area methods
to estimate under-5 mortality from birth history data. We apply this method to districts in Zambia
from 1980 to 2010 and report on levels and trends in mortality over that period.

2 Methods

2.1 Data

We used birth history data from three population censuses–1990, 2000, and 2010–and four DHS–
1992, 1996-97, 2001-02, and 2007 [13–19]. The population censuses include summary birth histories
for all women of reproductive age while the DHS include complete and summary birth histories
for all women of reproductive age. Our unit of analysis was the district as defined in 2010 for a
total of 72 districts grouped into nine provinces. Data collected prior to 2000 used a different set
of districts totaling 57. For districts that split in the transition from 57 districts to 72 districts,
data from the original district were assigned to all inheriting districts. Unlike the earlier DHS and
all of the censuses, the 2001-02 and the 2007 DHS datasets did not contain a district variable. For
the 2007 survey the latitude and longitude of each cluster were available and we used this to map
clusters to districts. There was no information available in the 2001-02 survey that allowed us to
identify districts, so we used this survey only at the province level. Table 1 gives the total sample
size as well as the range and median of the sample sizes across districts.
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2.2 Birth history methods

There are two different types of birth histories. Complete birth histories (CBH) are where
women are asked detailed questions about each child they have given birth to: the date of birth,
survival status, and, when applicable, age at death. In contrast, in a summary birth history (SBH)
women are asked only for the total number of children they have given birth to and the number
of these children that have died. CBH contain sufficient information to calculate under-5 mortality
directly, but SBH do not and consequently require demographic models which relate information
about total children born and died to under-5 mortality in specific time periods. SBH are more
frequently collected, however, because they impose a considerably smaller time burden than CBH.

We analyzed CBH data from the DHS using standard methods described elsewhere [20] to pro-
duce estimates of under-5 mortality from the pooled DHS data for each year prior to the most
recent survey in each district. We analyzed SBH data from the censuses using the maternal age
period (MAP) method described by Rajaratnam et al. [21,22].

2.3 Census correction

Exploratory analyses of the birth history data at the province and national level suggested that
the estimates from the census were systematically lower than estimates from the DHS. We posit
that this is due to data errors in the census: it is likely that the birth histories in the census, which
are somewhat secondary to the primary purpose of a census, are collected with less care than the
birth histories in the DHS which are a central component of the survey. We correct census SBH
data before fitting the small area model by finding the mean ratio in each province of q5 in the DHS
to q5 in the census matched by year and multiplying the census SBH estimates from all districts
within each province by this factor.

2.4 Small area model

The small area model we used can be described as a generalized linear mixed model. We specified
a normal likelihood for logit-transformed under-5 mortality (denoted q5i,t), which describes the
probability of observing the data given two parameters: θi,t, the mean in district i at time t, and
σ2, the variance:

logit(q5i,t)|θi,t, σ2 ∼ Normal(θi,t, σ
2) (1)

We employed a logit transformation as this has the desirable property that it restricts predictions
of under-5 mortality from all models to between 0 and 1. Our focus in this analysis was on the
form of the regression equation for θi,t which we specified as a linear combination of spatial effects,
temporal effects, and spatial-temporal interaction effects.

We considered a number of different forms for the temporal trend including categorical (i.e.,
time is modeled by a series of dummies on year), linear, random walk, B-spline, and natural spline.
We determined that a natural spline model with 1 interior knot provided the best balance between
flexibility and sufficient smoothing over time. Natural splines are incorporated into our model by
introducing fixed effects on K spline bases (S(k)(t)), where K and S(k)(t) are determined by the
type of spline and the number of interior knots [23]:

θt =

K∑
k=1

β(k) · S(k)(t) (2)
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To model spatial trends, we included a series of district-level random effects similar to those
proposed by Besag et al. [24]. Typically two random effects are included. The first has an intrinsic
conditional autoregressive (ICAR) prior:

ui|uj,j∈δj ∼ Normal

 1

ni

∑
j∈δi

uj ,
σ2u
ni

 (3)

Under this prior, the effect ui for each district i is normally distributed around the mean of the
effect in neighboring districts (δj), indicating a spatially smooth process. We defined neighbors
in terms of queen adjacency: districts with borders that share at least one point are considered
neighbors. The second random effect has an independent and identically distributed (IID) prior:

vi ∼ Normal(0, σ2v) (4)

Under this prior, the effect vi for each district i is independent of that for all other districts but the
districts share a common variance. We considered models with the IID random effect only (which
would be appropriate if there is little or no spatially structured variation), the ICAR effect only
(which is appropriate if all variation is spatially structured), and both effects. We found that the
model with both effects was most appropriate.

Ultimately we are interested not only in overall time trends or a single time-invariant spatial
pattern, but rather spatial patterns that change over time or, equivalently, temporal patterns that
vary by district. We followed the example of several authors [25–27] and combined the temporal
and spatial models just described by fitting IID and ICAR random effects for each spline basis in
addition to the fixed effects:

θi,t =
K∑
k=1

(β(k) + u
(k)
i + v

(k)
i ) · S(k)(t) (5)

In this model, all districts share a global trend given by
K∑
k=1

(β(k) · S(k)(t)). In addition, each dis-

trict deviates from the trend as given by
K∑
k=1

(u
(k)
i + v

(k)
i ) · S(k)(t). Because these deviations include

both an IID and an ICAR random term, it is possible for the district trends to vary in a spatially
structured and spatially unstructured way.

Finally, the birth history data we introduced into these small area models violate one important
assumption: that, conditional on θi,t, each observed q5i,t is independent. Most mothers interviewed
have multiple children and in a CBH these children contribute to estimates in multiple time periods,
leading to some correlation between the different estimates. The situation is more severe for SBH:
since the entire series is modeled, and further since there is a considerable amount of smoothing
involved in the demographic models used to generate these estimates, SBH estimates from any
given source are highly correlated. We address this by including a district-source level IID random
effect in our model to account for the correlation within each source in each district. Thus the final
model is

θi,t,s =
K∑
k=1

(β(k) + u
(k)
i + v

(k)
i ) · S(k)(t) + wi,s (6)
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where s denotes the source (DHS, 1990 census, 2000 census, or 2010 census) and wi,s is the IID
random effect on district-source. When making predictions we set wi,s to 0.

Normal priors with mean 0 and variance 1,000 were used for all fixed effects and gamma (0,
0.00005) priors were specified for the log of the inverse variance (precision) of all random effects.
All models were fit using the INLA program [28] in R version 2.15.2 [29]. This program provides
the median and 2.5th and 97.5th percentile of the posterior distribution for θi,t which we then
inverse-logit transformed to arrive at our estimates and confidence intervals for under-5 mortality
in each district and year. We also calculated confidence intervals for changes between two years in
under-5 mortality within each district by simulating 10,000 draws each from the marginal posterior
distributions for both years and finding the 2.5th and 97.5th percentile of the differences between
these two sets of draws. This procedure ignores the covariance between estimates for different time
points, which is not readily available, and thus provides a conservative estimate of the confidence
intervals for changes since it likely that the estimates for two different time points within a single
district are positively correlated.

3 Results

Figure 1 shows the estimated under-5 mortality for each district every five years between 1980
and 2010. These estimates reflect the national trend of decreasing mortality over this 30 year pe-
riod: it is evident from these maps that mortality has declined in nearly all districts. In earlier
years there is a distinct regional pattern where districts in the north, east, and southwest have the
highest levels of mortality, districts in the most urban parts of the country (Lusaka, the capitol,
and Copperbelt province) have the lowest levels of mortality, and districts in the rest of the central
part of the country have intermediate levels of mortality. This pattern persists relatively unaltered
from 1980 to 1995, but starting in the map for 2000 mortality begins to improve in all districts and
the highest mortality districts begin to catch up somewhat, while the urban areas appear to lose
some of their advantage.

The changes in under-5 mortality over time are shown explicitly in figure 2 which shows the
percent change in mortality over each decade and over the entire 30-year period. These maps tell a
story of accelerating progress. In the 1980s, most districts made relatively little progress in decreas-
ing child mortality while in 37 districts there is actually some evidence of an increase in mortality.
In the 1990s, most districts begin to make moderate progress and in the 2000s there is evidence
of progress in nearly all districts, in some cases with decreases exceeding 40% over the decade.
Considering the period as a whole, mortality has decreased in nearly all districts, though clearly
there is a considerable amount of variation, with some districts experiencing only minimal declines
(less than 5% in 2 districts) while others experience large declines (more than 50% in 10 districts).
These mortality estimates are associated with some uncertainty, so it is also interesting to look at
where there are statistically significant declines (at the 95% level) despite this uncertainty: figure 3
shows changes over the same periods as figure 2, but classifies each change as a significant increase,
a non-significant increase, a significant decrease, or a non-significant decrease. There are no sig-
nificant increases over any period for any district. In the 1980s the districts are fairly evenly split
between non-significant increases and non-significant decreases. In the 1990s, all but one district is
in the non-significant decrease group. In the 2000s there starts to be evidence of significant declines
in some districts, and when considering the entire 30 year period more than half (48) of districts
actually experienced a statistically significant decline in under-5 mortality.
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Figures 1 and 2 both suggest that the districts that have experienced the greatest declines are
those that started at the highest levels of mortality. Similarly, figure 3 shows that districts with
statistically significant declines over the entire 30 year period are concentrated in those areas that
had the highest levels of mortality in 1980. Figure 4 plots the percent change in under-5 mortality
between 1980 and 2010 against the level of mortality in 1980 for all 72 districts and also shows
the ordinary least squares regression line for this relationship. This emphasizes the observation
from the earlier figures that, in general, districts with higher mortality in 1980 have experienced
greater declines: the ordinary least squares regression suggests that the percent decline was 2.5
percentage points greater for every 10 per 1,000 live birth higher the level of under-5 mortality
in 1980. Nonetheless, at any given level of mortality in 1980, and particularly at the lower levels,
there is still considerable variation in the amount of progress made over the next 30 years. Districts
that experienced especially large declines given their starting level of mortality in 1980 have been
explicitly labeled on this plot.

Given that districts with the highest level of mortality have generally experienced greater de-
clines in mortality it is interesting to consider how within-country inequality has changed. Figure
5 shows the range (light gray box), interquartile range (dark gray box) and median (black line)
for mortality at the district level every five years from 1980 to 2010. This figure shows that not
only does the median of the distribution shift downward, indicating declining mortality overall,
but the amount of variation in the distribution, as measured by the range and interquartile range,
also decreases, indicating declining absolute inequality. Relative inequality has also decreased. In
1980 a child born in the Lundazi district (Eastern province), the district with the highest mortal-
ity, was 2.4 times more likely to die before age five than one born in Mufulira district (Copperbelt
province), where mortality was lowest. In contrast, in 2010 a child born in Chiengi district (Luapula
province), where mortality is highest, is 1.8 times more likely to die before age five than one born
in Mongu district (Western province), where mortality is lowest. Although both the overall level of
child mortality and the degree of inequality within country remain high, both improved markedly
between 1980 and 2010.

4 Discussion

Combining birth history methods and small area methods is useful for estimating under-5 mor-
tality in a country like Zambia where more traditional data sources are unavailable. The model
described here borrows strength in space and time in order to improve predictions despite small
sample sizes at the district level. Further, we are able to incorporate data from both summary
and complete birth histories, allowing us to make use of all available data sources. Finally, these
methods allow us not only to predict under-5 mortality in each district, but also to quantify the
uncertainty associated with all predictions.

District level estimates of under-5 mortality in Zambia reveal sub-national trends that are
masked by national level estimates. While mortality has declined in nearly all districts, as at the
national level, the magnitude of this decline varies considerably within Zambia. This has had im-
plications for the amount of inequality between districts: because districts with the highest initial
levels of mortality were also the most likely to experience larger declines inequality has decreased
over the past 30 years in Zambia. Nonetheless, under-5 mortality remains high in all districts and
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there is still a nearly two-fold difference between the best performing and worst performing dis-
tricts. These findings have important implications for future efforts to continue to reduce child
mortality in Zambia. First, districts that have experienced the greatest declines merit study: what
were the drivers of these declines? Can the lessons learned from these districts be applied to other
districts where progress has been less impressive? Second, districts that have experienced little
progress merit renewed attention: what is keeping these districts from making the kind of progress
made in other parts of the country? Further, the methods described in this paper for combining
birth history data and methods with small area models are easy to update–as new survey data
become available these methods could be used to track progress in the immediate past, providing
an important feedback mechanism with regards to efforts to improve child health and survival.
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Figure 1: Under-5 mortality by district from 1980 to 2010 (deaths per 1,000 live births).
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Figure 2: Percent change in under-5 morality by district for each decade and from 1980 to 2010.
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Figure 3: Statistical significance and direction of change in under-5 mortality by district for each
decade and from 1980 to 2010.
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Under−5 mortality in 1980 (deaths per 1,000 live births)
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Figure 4: Percent change in under-5 morality from 1980 to 2010 and level of under-5 mortality in
1980.
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Figure 5: Distribution of district-level under-5 mortality by year from 1980 to 2010. Light gray
box gives the range, dark gray boxes the interquartile range, and black circles the median across
all districts in each year.
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