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Resume

La malnutrition pendant l’enfance est le resultat des effets synergiques repetees
et mal traitees ainsi que d’un apport alimentaire inadequat, causes frequente
d’une mortalite accrue(Pelletier et al. , 1993. Nous portons notre attention sur
la modelistaion flexible des determinants de la malnutrition infantine avec de la
methode Bayesienne de MCMC. L’etude est basee sur les donnees des Enquetes
demographiques et sanitaire de 1992 de la Tanzanie et la Zambie respectivement.

Abstract

We estimate semiparametric regression models of chronic undernutrition (stunt-
ing) using the 1992 Demographic and Health Surveys (DHS) from Tanzania and
Zambia.

We focus particularly on the influence of the child’s age and the mother’s body
mass index on chronic undernutrition. Conventional parametric regression mod-
els are not flexible enough to cope with possibly nonlinear effects of the two con-
tinuous covariates age of the child and mother’s body mass index. We present
a Bayesian semiparametric analysis of the effects of covariates on chronic un-
dernutrition that is suitable for exploring unknown nonlinear effects of metrical
covariates. In a second step we investigate possible interactions between cate-
gorical covariates and child’s age and mother’s body mass index using varying
coefficients models. Inference is fully Bayesian and uses recent Markov chain
Monte Carlo techniques.

Keywords Developing Countries; semiparametric Bayesian inference;
undernutrition; varying coefficients models

1 Introduction

Acute and chronic undernutrition is considered to be one of the
worst health problems in developing countries. Poor nutrition is of
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intrinsic concern to policy-makers. In addition, it is also associated
with other important development outcomes such as high mortality
and poor labor productivity (Sen, 1999; UNICEF, 1998). In fact,
some estimates claim that undernutrition is implicated in over 50
percent of deaths in developing countries (UNICEF, 1998).

Undernutrition among children is measured by determining the an-
thropometric status of the child. Researchers distinguish between
three types of undernutrition: wasting or insufficient weight for height
indicating acute undernutrition; stunting or insufficient height for
age indicating chronic undernutrition; and underweight or insuf-
ficient weight for age which could be a result of either. Wasting,
stunting, and underweight for a child i are typically determined us-
ing a Z-score which is defined as:

Zi =
AIi −MAI

σ
where AI refers to the individual anthropometric indicator (e.g.
height at a certain age), MAI refers to the median of a reference
population, and σ refers to the standard deviation of the reference
population. The reference standard typically used for the calculation
is the NCHS-CDC Growth Standard that has been recommended for
international use by WHO (WHO, 1983; 1995).

Important determinants of undernutrition include the education, in-
come, and nutritional situation of the parents, access to clean water
and sanitation, and access to primary health care and immuniza-
tion facilities (UNICEF, 1998; Klasen, 1999; Nyovani et al., 1999).
Some of these influences are likely to have non-linear effects on un-
dernutrition. In particular, the nutritional situation of the parents,
measured using the Body Mass Index (BMI, defined as the weight in
kg divided by the square of height in meters) is presumed to follow
an inverse U-shape. Parents who exhibit a very low BMI, indicating
their poor nourishment, are likely to have poorly nourished children.
At the same time, parents with a very high BMI might also have
poorly nourished children as the obesity associated with their high
BMI indicates poor quality of nutrition and might therefore indicate
poor quality of nutrition for their children.

Moreover, the development of undernutrition typically follows a pat-
tern that is closely related to the age of the child. While some chil-
dren are already born undernourished due to growth retardation in
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utero, the anthropometric status of children worsens considerably
only after 4-6 months, when children are weaned and solid foods are
introduced (WHO, 1995; Stephenson, 1999). This is due to the in-
fluence of poor quality nutrition that is replacing breastmilk as well
as the onset of infectious diseases. These diseases are often related
to unclean water and food which is replacing the breastmilk, and
the child no longer profits from the mother’s antibodies that were
transmitted through the breastmilk (Stephenson, 1999). Initially,
the worsening anthropometric status shows up as acute undernutri-
tion. But then stunting develops and is held to worsens until about
age 2-3. At that time, the body has, through reduced growth, ad-
justed to reduced nutritional intake and now needs fewer nutrients
to maintain this smaller stature. In addition, the body has devel-
oped its immune system to fight the impact of infectious diseases
more effectively (WHO, 1995; Moradi and Klasen, 2000).

In this paper, we model the determinants of stunting in Zambia
and Tanzania. Stunting is very prevalent in these two countries.
Overall, 42 percent of Zambian children under age five are classified
as stunted (Z score less than minus 2) and 18 percent as severely
stunted (Z score less than minus 3). In Tanzania, overall, 43 percent
of Tanzanian children under five are classified as stunted and 18
percent are severely stunted (Somerfelt and Stewart, 1994).

A particular focus is to use a flexible approach to model the im-
pact of age and the BMI of the mother on undernutrition with the
help of a semiparametric Bayesian modelling approach developed by
Fahrmeir and Lang (2000a, b). Inference is fully Bayesian and uses
MCMC techniques.
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2 Semiparametric Bayesian regression models

2.1 Observation model

Consider regression situations, where observations (yi, xi, wi), i =
1, . . . , n, on a metrical response y, a vector x = (x1, . . . , xp) of metri-
cal covariates and a vector w = (w1, . . . , wr) of categorical covariates
are given. We assume that yi given the covariates and unknown pa-
rameters are independent and Gaussian with mean ηi and a common
variance σ2 across subjects, i.e. yi ∼ N(ηi, σ

2). In our application on
childhood undernutrition the response is stunting measured as a Z-
score (multiplied by 100). Traditionally, the effect of the covariates
on the response is modelled by a linear predictor

ηi = x′
iβ + w′

iγ. (1)

In this paper particular emphasis is on the effects of the two metrical
covariates ”age of the child” AGC and the ”mother’s body mass
index” BMI which are possibly nonlinear. Thus, we replace the
strictly linear predictor (??) by the more flexible semiparametric
predictor

ηi = f1(xi1) + · · ·+ fp(xip) + w′
iγ. (2)

Here, f1, . . . , fp are nonlinear smooth effects of the metrical covari-
ates.

Models with the predictor (??) form the basis of our analysis. In a
second step we investigate possible interactions between the metrical
covariates AGC and BMI and the categorical covariates (e.g. educa-
tion). A convenient way of modelling these kinds of interactions is
through varying coefficients models introduced by Hastie and Tib-
shirani (1993). Here, an interaction between a metrical covariate x
and a categorical covariate w is modelled by a predictor of the form

ηi = · · ·+ f(xi)wi + · · · , (3)

where f is again a smooth function of x. Thus, the effect of w is no
longer fixed but varies smoothly over the range of x. Covariate x is
called the effect modifier of w.
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2.2 Prior assumptions

In a Bayesian approach unknown functions fj and parameters γ as
well as the variance parameter σ2 are considered as random variables
and have to be supplemented with appropriate prior assumptions. In
the absence of any prior knowledge we assume independent diffuse
priors γj ∝ const, j = 1, . . . , r for the parameters of fixed effects.
Another common choice are highly dispersed Gaussian priors.

Several alternatives are available for the priors of the unknown
(smooth) functions fj, j = 1, . . . , p. For the moment we may dis-
tinguish roughly two main approaches for Bayesian semiparametric
modelling. These are base functions approaches with adaptive knot
selection (e.g. Dennison et al.,1998 , Biller, 2000, and Smith and
Kohn, 1996) and approaches based on smoothness priors. In the
following we will focus on the latter one. Several alternatives have
been proposed for specifying a smoothness prior for the effect f of
a metrical covariate x. Among others, these are random walk priors
(Fahrmeir and Lang, 2000a), Bayesian smoothing splines (Hastie
and Tibshirani, 2000) and Bayesian P-splines (Lang and Brezger,
2000a). In this paper we focus on random walk priors. We also com-
pared our results with Bayesian smoothing splines and P-splines but
the estimated functions were more or less undistinguishable.

For the random walk prior, let us first consider the case of a met-
rical covariate x with equally spaced observations xi, i = 1, . . . ,m,
m ≤ n. Suppose that x(1) < . . . < x(t) < . . . < x(m) is the ordered
sequence of distinct covariate values. Define f(t) := f(x(t)) and let
f = (f(1), . . . , f(t), . . . , f(m))′ denote the vector of function evalua-
tions. Then a first or second order random walk prior for f is defined
by

f(t) = f(t− 1) + u(t) or f(t) = 2f(t− 1)− f(t− 2) + u(t) (4)

with Gaussian errors u(t) ∼ N(0; τ 2) and diffuse priors f(1) ∝ const,
or f(1) and f(2) ∝ const, for initial values, respectively. A first order
random walk penalizes abrupt jumps f(t) − f(t − 1) between suc-
cessive states and a second order random walk penalizes deviations
from the linear trend 2f(t− 1)− f(t− 2). Random walk priors may
be equivalently defined in a more symmetric form by specifying the
conditional distributions of function evaluations f(t) given its left
and right neighbours, e.g. f(t− 1) and f(t+1) in the case of a first
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order random walk. Thus, random walk priors may be interpreted
in terms of locally polynomial fits. A first order random walk cor-
responds to a locally linear and a second order random walk to a
locally quadratic fit to the nearest neighbours. Of course, higher or-
der autoregressions are possible but practical experience shows that
the differences in results are negligible. For the case of nonequally
spaced observations random walk priors must be modified to ac-
count for nonequal distances δt = x(t)−x(t−1) between observations.
Random walks of first order are now specified by

f(t) = f(t− 1) + u(t), u(t) ∼ N(0; δtτ
2), (5)

i. e., by adjusting error variances from τ 2 to δtτ
2. Random walks of

second order are defined by

f(t) =

(
1 +

δt

δt−1

)
f(t− 1)− δt

δt−1

f(t− 2) + u(t), (6)

u(t) ∼ N(0;wtτ
2), where wt is an appropriate weight. Several pos-

sibilities are conceivable for the weights, see Fahrmeir and Lang
(2000a) for a discussion.

The trade off between flexibility and smoothness of f is controlled by
the variance parameter τ 2. In our approach we want to estimate the
variance parameter and the smooth function simultaneously. This is
achieved by introducing an additional hyperprior for τ 2 in a further
stage of the hierarchy. We choose a highly dispersed but proper
inverse gamma prior p(τ 2) ∼ IG(a; b) with a = 1 and b = 0.005. In
analogy, we also define for the overall variance σ2 a highly dispersed
inverse gamma prior.

2.3 Posterior inference

Bayesian inference is based on the posterior and is carried out us-
ing recent MCMC simulation techniques. Without loss of general-
ity, we restrict the presentation to models with predictor (??). Let
f = (f1, . . . , fp) and τ 2 = (τ 2

1 , . . . , τ
2
p ) denote parameter vectors for

function evaluations and variances. Then, under usual conditional
indepence assumptions, the posterior is given by

p(f, τ 2, γ|y) ∝
n∏

i=1

Li(yi; ηi)
p∏

j=1

{p(fj|τ 2
j )p(τ

2
j )}

r∏
k=1

p(γk)p(σ
2).
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The full conditionals for unknown functions fj, j = 1, . . . , p, and
fixed effects parameters γ are Gaussian and for variance components
τj, j = 1, . . . , p and σ2 the full conditionals are inverse gamma dis-
tributions. Thus, a simple gibbs sampler can be used for MCMC
simulation, drawing successively from the full conditionals for fj,τ

2
j ,

j = 1, . . . , p and σ2. Efficient sampling from the Gaussian full con-
ditionals of nonlinear functions is guaranteed by Cholesky decom-
positions for band matrices. More details can be found e.g. in Rue
(2000) or Fahrmeir and Lang (2000b).

3 Data and Results

The Demographic Health Surveys (DHS) of Tanzania and Zambia,
both conducted in 1992, are used in this study. These surveys draw
a representative sample of women of reproductive age and then ad-
minister a questionnaire and an anthropometric assessment of them-
selves and their children that were born within the previous five
years. The data sets contains information on family planning, ma-
ternal and child health, child survival, HIV-AIDS, educational at-
tainment, and household composition and characteristics. There are
8138 cases for Tanzania and 6299 for Zambia.

We concentrate in the analysis on the flexible modeling of the effects
of the child’s age and the mother’s BMI on chronic undernutrition
(stunting), measured using the Z-score (multiplied by 100) as de-
scribed above. The response variable stunting described above has
been further standardized in this analysis for computational pur-
poses. In addition, we consider several categorical variables includ-
ing the sex of the child, the education and employment situation of
the mother, access to water (later omitted as it was found to have
a negligible influence), locality (urban and rural) and the province
in which the household is located. The education variable is coded
in three categories called, respectively, ’no education and incom-
plete primary education’ (reference category), ’complete primary
education and incomplete secondary education’, and ’complete sec-
ondary education and higher’. For the employment situation of the
mother, we distinguish between working and not working. There are
six provinces for Tanzania and nine provinces for Zambia as shown
in Table 1. We estimate separate models for each countries with
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predictor
η = γ0 + f1(AGC) + f2(BMI) + γ′w

where w includes the categorical covariates in effect coding. The
functions f1 and f2 are modelled by second order random walk priors
defined in (??) and (??). All computations have been carried out
with BayesX, a software package for Bayesian inference basd on
MCMC simulation techniques, see Lang and Brezger (2000b).

Table 1 shows the results of the fixed effects parameters in Tanza-
nia. The results are generally as expected. Children of highly edu-
cated working mothers living in urban areas are better nourished
than other children. Being female is also associated with reduced
levels of stunting, a finding consistent with Svedberg (1996) and
Klasen (1996). There are also sizeable regional fixed effects, which
are highly significant (i.e. credible intervals are either strictly posi-
tive or strictly negative).

The results are quite similar for Zambia (Table 2). The direction
of influences are the same in both countries. The size of the coef-
ficients differ slightly and in Zambia the the 80 % credible region
for the mother’s employment status includes zero. The regional ef-
fects are also large and significant. Access to water was found to be
insignificant in both countries and was therefore omitted.

The left panel of Figure 1 shows the effect of the BMI of the mother
in Tanzania. Shown are the posterior means together with 80 %
pointwise credible intervals. For comparison a regression line (dashed)
obtained by a linear fit is added to the plot. As hypothesized, we
find the influence to be in the form of an inverse U shape. While
the inverse U looks nearly symmetric, the descending portion ex-
hibits a much larger range in the credible region. This appears quite
reasonable as obesity of the mother (possibly due to a poor quality
diet) is likely to pose less of a risk for the nutritional status of the
child as very low BMIs which suggest acute undernutrition of the
mother. The Z-score is highest (and thus stunting lowest) at a BMI
of around 30-35 months.

The right panel of Figure 1 shows the effect of the child’s age on
its nutritional status in Tanzania. As suggested by the nutritional
literature, we are able to discern the continuous worsening of the nu-
tritional status up until about 20 months of age. This deterioration
set in right after birth and continues, more or less linearly, until 20
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months. Such an immediate deterioration in nutritional status is not
quite as expected as the literature typically suggests that the wors-
ening is associated with weaning at around 4-6 months. One reason
for this unexpected finding could be that, according to the surveys,
most parents give their children liquids other than breastmilk al-
ready shortly after birth which might contribute to infections.

After 20 months, stunting stabilizes at a low level. Through reduced
growth and the waning impact of infections, children are apparently
able to reach a low-level equilibrium that allows their nutritional
status to stabilize.

We also see a blip around 24 months of age. This is picking up
the effect of a change in the data set that makes up the reference
standard. Until 24 months, the currently used international reference
standard is based on white children in the US of high socioeconomic
status, while after 24 months, it is based on a representative sample
of all US children (WHO, 1995). Since the latter sample exhibits
worse nutritional status, comparing the Tanzanian children to that
sample leads to a sudden improvement of their nutritional status at
24 months. This anomaly of the reference standard is one reason for
WHO’s current efforts to construct a new reference standard (WHO,
1999).

The left panel of Figure 2 shows the effect of mother’s BMI on
chronic undernutrition in Zambia. Also here we find a, somewhat
less pronounced, inverse U-shape. The inverse U-shape is much more
pronounced on the ascending left portion than on the descending
right portion, which is only barely discernible. Again, this is con-
sistent with the notion that acute undernutrition of the mother is
more of a risk for the child than obesity. The right panel of Figure 2
shows the impact of the child’s age on stunting in Zambia. Here the
deterioration in the nutritional status appears to be slightly longer.
It only stabilizes at around 22-24 months. Since this stabilization
coincides with the change in data set in the reference standard, it is
not possible to distinguish between the two phenomena as it was in
Tanzania.

We experimented with several interactions. First, we ran separate
models for males and females (not reported here) but found them to
be very similar. Second, we estimated a varying coefficients model
where we interact the effect of mother’s education with the age of the
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child. This interaction only had a significant effect in Zambia. Figure
3 shows that the effect of mother’s education is negligible at birth
and then rises, more or less linearly, to become quite pronounced
for older children. Higher education which is an indicator also of
greater parental resources and better care practices thus appears to
matter more for older than for younger children. Since most infants
are breastfed and greater parental discretion only enters at and after
weaning, this finding suggests that this has an important impact on
the effect of education on stunting.

Figure 4 shows the region fixed effects as shown in table 1 and table
2 in effect coding.

Quite clearly, the semi-parametric Bayesian approach used is able
to identify subtle influences of the mother’s BMI and the child’s age
on the nutritional status of the child. The linear fits included in the
figures show the inadequacy of such an approach. We also exper-
imented with cubic splines to model the impact of the child’s age
and the mother’s BMI more flexibly, but found that this approach
was particularly unreliable in regions where there are relatively few
observations.

4 Conclusion

In this paper, we have applied a semi-parametric Bayesian approach
to model the determinants of chronic undernutrition (stunting) in
Tanzania and Zambia. We find that our methods are identifying sub-
tle relationships between the mother’s BMI and the child’s age on
undernutrition. In particular, the effects of the BMI on the child’s
nutritional status appears to be in the form of an inverse U. More-
over, stunting appears to worsen until about 20-25 months and then
stabilize at a low level equilibrium. There also appears to be an in-
teraction between mother’s education and age, with mother’s educa-
tion having an increasing impact on stunting among older children.
While some of these effects have been identified in univariate anal-
ysis, this study is able to show that these subtle influences remain
in a multivariate context, controlling for a range of fixed effects and
using a flexible approach to modelling these influences.

The fixed effects show the importance of mother’s education, em-
ployment status, residence, the household size, and the sex of the
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child on chronic undernutrition. There are sizeable regional effects
which need to be scrutinized in further work.

This semi-parametric approach thus appears to be able to discern
subtle influences on undernutrition. It could also be of value for a
flexible modeling of other determinants of undernutrition in devel-
oping countries, a subject to be addressed in future work.
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Appendix
Table 1: Region Fixed effects for tanzania

Variable mean 10% quant. 90%quant.
constant 0.49 0.39 0.59
Urban 0.06 0.04 0.09
Rural -0.06 -0.09 -0.04
Male -0.04 -0.05 -0.02
Female 0.04 0.02 0.05
Not working 0.02 0 0.03
Working -0.02 -0.03 0
No edu. and incompl. prim. edu. -0.23 -0.32 -0.14
Compl.primary edu. and incompl. sec. edu -0.16 -0.24 -0.07
Secondary edu. and higher 0.39 0.21 0.56
Coastal 0.01 -0.03 0.05
Northern Highlands 0.19 0.14 0.23
Lake 0.1 0.07 0.13
Central 0.01 -0.03 0.06
Southern Highlands -0.07 -0.11 -0.03
South -0.24 -0.28 -0.2

Table 2: Region Fixed effects for Zambia

Variable mean 10% quant. 90%quant.
constant -1.82 -9.57 3.3
Urban 0.01 -0.02 0.04
Rural -0.01 -0.04 0.02
Male -0.06 -0.08 -0.04
Female 0.06 0.04 0.08
Not working -0.01 -0.02 0.01
Working 0.01 -0.01 0.02
No edu. and incompl. prim. edu. -0.13 -0.17 -0.09
Compl.primary edu. and incompl. sec. edu -0.04 -0.08 -0.01
Secondary edu. and higher 0.18 0.12 0.24
Central 0.09 0.03 0.14
Copperbelt 0.08 0.03 0.13
Eastern -0.08 -0.14 -0.03
Luapula -0.25 -0.3 -0.2
Lusaka 0.13 0.08 0.18
Northern -0.22 -0.27 -0.17
North-Western -0.1 -0.17 -0.04
Southern 0.22 0.17 0.26
Western 0.14 0.09 0.21
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Figure 1. Nonlinear effects of body mass index and child’s age for Tanzania.
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Figure 2. Nonlinear effects of body mass index and child’s age for Zambia.
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Figure 3. Varying effects of education with respect to child’s age for Zambia.
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Figure 4. Region Fixed effects for Tanzania (left) and Zambia (right) (Effects coding).
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