
TFR predictions based on Brownian motion theory

Nico Keilman

Department of Economics

University of Oslo

P.O. Box 11650 Blindern

N-0317 Oslo

Norway

Email: nico.keilman@econ.uio.no

June 2001

Paper prepared for presentation at the XXIV IUSSP General Population Conference, 18-24
August, Salvador, Brazil, Session S51.

mailto:nico.keilman@econ.uio.no


2

TFR predictions based on Brownian motion theory

Abstract

• Context

In stochastic cohort component forecasts, the expected level of future TFR and its predictive
distribution are of central concern. Time series models can be used to predict the TFR and its
moments on the short run (up to 10 or 20 years). Experience shows that on the long run (40-
50 years), such models result in excessively wide prediction intervals. Appropriate logit
transformations may keep the TFR bounded within pre-specified limits. However, when using
this method predictive densities become bi-modal on the long run, with probability mass
concentrated near the upper and the lower bound.

• Method

I model the time series of period TFR-values, or transformations thereof, as a Brownian
motion with absorbing barriers. I give and analyse
• expressions for the predictive distribution of the TFR assuming it follows a random walk

with absorbing ceiling a;
• approximate expressions for the first and second moments of the predictive distribution of

the TFR, when first differences of the log of the TFR follow a random walk with
absorbing ceiling a.

• Results

When first differences of the log of the TFR follow a random walk with absorbing ceiling a, I
find that the second moment of the predictive distribution for the long-run TFR in Norway is
insensitive for levels of a beyond a threshold of approximately 3 children per woman. The
second moment grows rapidly when a increases from TFR(0) to approximately 2.5 children
per woman, where TFR(0) is the starting point of the TFR. This conclusion holds for a fairly
broad range of innovation variances. The threshold level of a is rather sensitive for the
starting values of the time series, but it remains below 4 children per woman over a
reasonable range of those starting values.

• Conclusions

If the log of the TFR follows an ARIMA(1,1,0) process with autoregressive coefficient close
to one and realistic innovation variance, sample paths that exceed approximately 3-4 children
per woman may be rejected when simulating future fertility in Western countries. This will
not have any major effect on the width of the long-term predictive distribution.
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TFR predictions based on Brownian motion theory1

1. Introduction

Keilman and Pham (2000) present TFR-predictions for Norway for the years 1996-2050.

These are based on an ARIMA (1,1,0) model for the logarithm of the annual TFR, estimated

on the basis of data for the years 1945-1995. The long-run predictions for the mean and

median values of the TFR appear reasonable: 2.2 and 1.9 children per woman, respectively.

However, and not surprisingly, the prediction intervals are excessively wide on the long run.

For example, the 95 per cent prediction interval in 2050 ranges from 0.6 to 6.1 children per

woman. Around the year 2020, the upper 95 per cent bound exceeds the level of four children

per woman, clearly an unrealistic value for Norway, even if the probability is only 2.5 per

cent. Thus the model produces informative prediction intervals up to 20-30 years ahead, but in

the long run the predictions are unrealistic and the prediction intervals are too wide.

The reason why the ARIMA model on the long run produces wide prediction intervals for the

period TFR is that it contains no extraneous information beyond the past data. Several factors

are associated with the development of fertility after World War II in Norway, similar to other

countries. Important elements in this respect are the introduction of modern contraception, the

adoption of new norms and values with respect to childbearing and partnership, increased

interest in tertiary education, and growing levels of labour force participation among women

(Kravdal 1994; Lesthaeghe and Surkyn 1988). None of these factors is, or could be, explicitly

modelled. It is reasonable to expect that they will be in operation in the future, too. Yet we

have no idea to what extent these or other factors will constrain Norwegian fertility in the next

century, be it period or cohort developments.

One has to take recourse to other methods when predictions so far ahead are required. The

easiest one is to assume that in 2020, say, uncertainty is already so large that it will not

increase any more (e.g. Alho and Spencer 1997). In that case prediction intervals are constant

after 2030. A more sophisticated one is to assume that there is an upper bound to fertility

levels in Norway. This can be done in several ways: by means of a logit transformation, by

means of simulation in which extreme values are rejected, and analytically, based on the

theory of Brownian motion.

1
Discussions with Juha Alho, and help from Atle Seierstad are gratefully acknowledged. The usual disclaimer applies.
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2. Logit transformation

Lee (1993) has used a logit transformation in order to restrict predicted TFR-values. He first

transformed the annual TFR for the United States into

gt = ln{(TFRt - L)/(U - TFRt)}

where L and U are pre-specified lower and upper limits for the TFR. Next he identified and

estimated an ARIMA-model for the transformed variable gt. This logit transformation will

produce a forecast for the TFR that will never exceed U or fall below L. However, as noted by

Alho and Spencer (1997), such a model may have undesirable consequences. They

demonstrated that when gt follows a random walk process, then TFRt will eventually be

“absorbed” close to U or L for large enough t. This anomaly also showed up in our case. We

selected L=1.0 and U=3.1, and identified a univariate ARIMA (2,1,0)-process for the logit

transformed Norwegian TFR.2 In 2050, the bounds of the 67 per cent prediction interval (1.12,

2.86) were very close to those of the 95 per cent interval (1.01, 3.08). In the long run, the

boundaries of any interval approach the upper and lower bounds U and L arbitrarily closely.

The conclusion is that Lee’s logit transformation cannot be used for constraining our

prediction intervals.

3. Rejecting extreme values

In Keilman and Hetland (1999) we simulated predictive TFR intervals by means of the

ARIMA (1,1,0) model mentioned in Section 1, thereby rejecting extreme values. We

experimented with upper bounds ranging from 2 to 5, and inspected the resulting prediction

intervals. We found that setting reasonable limits to the predicted TFR has little impact on the

bounds of the 67 per cent prediction intervals in the short run. In the year 2020, this interval is

0.80 children per woman wide when the TFR is limited to 3 children, and 0.92 and 0.95

children wide for maximum TFR values of 4 and 5, respectively. In the long run however,

uncertainty (as expressed by the width of the 67 per cent prediction interval) grows faster. In

2050, the interval widens from 1.31 children per woman for a maximum TFR of 3, to 1.64

and 1.88 children per woman for maximum TFRs of 4 and 5, respectively. The 95 per cent

Research was supported by grant no. 114055/730 from the Norwegian Research Council.
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interval bounds are rather strongly influenced by the choice for a certain maximum TFR-

value, also in the short run. In 2010 the width amounts to 1.60, 1.92, and 2.06 children per

woman for maximum TFR-values of 3, 4, and 5. A maximum TFR equal to 3 would imply a

median and a mean TFR that decrease over time, which was judged unreasonable. Therefore

the general conclusion was that a maximum TFR equal to 4 children per woman appeared to

be a reasonable choice.

4. Brownian motion

Choosing upper and lower bounds for the TFR as discussed in the previous sections is largely

an arbitrary matter. At the same time, the choice may have important consequences for the

shape of the predictive distribution, as was argued in Section 3. In the current section we will

discuss an analytical method. The method is based on the theory of Brownian motion. It is

exact in case the time-series for the parameter is a random walk, i.e. an AR(1)-process with

coefficient equal to 1. In Keilman and Pham (2000), first differences in logs of the TFR and

the mean age at childbearing (MAC) are AR(1), with coefficients equal to 0.67 and 0.88. In

other words, the process for the MAC is close to a random walk, and that for the TFR is

reasonably close. This makes it worthwhile to investigate to what extent Brownian motion

theory can be used to select the bounds for the fertility parameters.

Assume that a random variable Z=Zt follows a Brownian motion, but that it is absorbed as

soon as it reaches a ceiling a. The transition density of the process at time t is (Borodin and

Salminen 1996, 107)3
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where z0 is the starting position at time t=0 of the random variable, and σ2 is the variance of

the innovation process. When a approaches infinity, the second exponential vanishes, and the

density approaches that of a normal variable with expectation z0 and variance σ2t, as expected.

2
The maximum TFR-value in the period 1945-1995 was 3.02 in 1964. Hence an upper bound of 3.0 would cause the
transformation to break down in that year.

3
Note that, in contrast to Borodin and Salminen, we have introduced a ceiling instead of a floor (reversing the inequalities),
and a general process variance equal to σ2 instead of a standard variance equal to one (substituing σ2t for t).
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We want to compute the expected value and the variance of Zt as a function of the ceiling a,

given that the process has not been absorbed.

At time t there are two possibilities: the process moves freely on the line -∞<zt<a, or it is

absorbed at the ceiling a. The probability that we encounter the first situation is

∫ ∞−

a

t dzazzf .),;( 0 Using expression (1), it can be shown that this integral equals

∫
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where Φ(u)=Pr[U ≤ u] denotes the cumulative distribution of a standard normally distributed

variable U. The probability that the process is absorbed at a is the complement of this

expression, viz. 2{1-Φ(.)}, and the transition density for the event that the process is in zt,

given that it has not been absorbed, is g(zt;z0,a)=f(zt;z0,a)/[2Φ(.)-1]. Thus, expressions (1) and

(2) give us the probability density of g. Its expected value variance may be computed on the

basis of the moment generating function ∫ ∞−
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For large a, the probability of non-absorption (2Φ(u)-1) approaches 1, so that the expected

value approaches z0. For finite a, 2Φ(u)-1<1, and the expected value is lower than z0. Φ(u)

falls when t increases, so that the expected value becomes progressively lower than z0. All

these findings are as one would expect.

After some tedious but straightforward algebra one finds for the second moment of g(zt;z0)
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so that its variance equals

Varg(Zt;z0,a) =
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For large a, Φ(u) approaches one, while at the same time the exponential vanishes. In that

case the second moment is close to z2
0+σ2t, and the variance approaches z2

0 + σ2t - z2
0 = σ2t,

which is the variance of a random walk.

How do the expected value in expression (3) and the variance in expression (4) change when

the ceiling a changes? For fixed z0, t and σ2, the expected value increases monotonically with

growing a. It is lower than the starting value z0, but approaches that value asymptotically,

when a is increased. The variance in expression (3) is the sum of three terms, T1, T2, and T3,

say. T1= z2
0+σ2t represents the second moment of a random walk - it is independent of the

ceiling a. T2 is written in curled brackets, and T3 contains the exponential function. Figure 1

illustrates how T2, T3, and the variance depend on a, for the case z0=0, t=1, and σ2=1.

[Figure 1. Variance of a Brownian motion with ceiling a, and its components]

The figure shows that the variance is S-shaped. For small a, it starts a little under .5, and it

approaches σ2t=1 asymptotically when a grows.4 The reason is that, for large enough a, the

term T2 approaches -z2
0=0, and T3 dies out.

Figure 1 holds for t=1 only. When time increases, the S-curve is shifted upwards, and at the

same time it is stretched to the right. For very small yet positive a, the variance (by L’Hopital)

is close to t(2-π/2), and for large a it approaches t (still assuming z0=0 and σ2=1), which

confirms the earlier finding. Empirically I found that for a given ceiling a, at time t ≈ a, the

variance is close to its asymptotic level t.
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5. Integrated random walk

The next step is to derive the expected value and variance for the process Yt = exp(Ct). From

now on I shall work in discrete time, and speak of “random walk” instead of “Brownian

motion”. Ct is the integrated random walk, so that Zt = Ct - Ct-1. The process Zt has expected

value Eg(Zt;z0,a) = E(Zt), and variance Varg(Zt;z0,a) = Var(Zt), given by expressions (3) and

(4) respectively. Ct has expectation E(Ct) = c0+Σt E(Zt), so that the expectation of Yt equals

E(Yt)=exp[E(Ct)+½ Var(Ct)]. Since the Z-process has independent innovations, the covariance

Cov(Zt,Zt+h), h≠0, is zero. Thus Ct has variance Var(Ct) = Σt Var(Zt), and, by the Delta

method, Yt has variance approximately equal to Var(Ct).exp(2E(Ct)).
5

Choosing an appropriate value for the ceiling a poses a problem. Assume that the process Yt

starts in a known point y0, and that it has a ceiling b>y0. Then c0=ln(y0), and the ceiling for Ct

is ln(b). This means that at time t=1, the increment Z1 should not exceed a1=(ln(b)-c0), at time

t=2, Z2 should not exceed a2=(ln(b)-C1), and so on. In general, Zt should not exceed at=(ln(b)-

Ct-1). In this set-up, the ceiling becomes a random variable, so that expressions (3) and (4) for

the expected value and the variance of Zt no longer can be used; instead one should write
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When a=0, the ceiling coincides with the starting point z0, and we have a degenerated process.

5
When a random variable Y is a function f of some other random variable X, then approximate expressions for the expected
value and the variance of Y=f(X) are E(Y) ≈ f(ξ) + ½f’’(ξ).Var(X), and Var(Y) ≈ [f’(ξ)]2Var(X), where ξ=E(X).
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Next, the Delta method may be invoked to compute the expected value of these two highly

non-linear functions of At. This requires the second derivative of the expected value and of the

variance, see footnote 5. However, preliminary experimentation showed that the second

derivative of the expected value is of the order of magnitude of ut.exp(-ut
2/2), which is small

over a large range of ut. Thus this second derivative may be ignored in practice, and one can

simply replace, in expression (3’), At by its expected value ln(b)-E(Ct-1). The same is true for

the variance of Zt, which is dominated by the non-random part z2
0+σ2t. A second problem is

that subsequent values of Zt are negatively correlated, due to the time-dependent ceiling at.

When this autocorrelation is ignored, for instance because E(Ct-1) is small compared to ln(b),

the variance of Ct is overestimated.

6. Application

I have analysed the mean value and the variance of the predicted TFR for Norway in the

period 1996-2050, using the expressions given in (3') for Yt. First differences in log-values of

the TFR were assumed to follow a random walk, with innovation variance equal to

σ2=0.000703 (Keilman and Pham (2000), Table 3.3). The starting value z0 was

ln(TFR1995/TFR1994) = ln(1.8700/1.8704) = -0.00021.

For large values of b, the process Zt is an unconstrained random walk, and Yt is the

exponential of an integrated random walk. In that case, predictions for both Zt and its

integrated process Ct are normally distributed; hence prediction intervals for Yt are

straightforward, once the mean and the variance of Zt and Ct have been computed. Prediction

intervals for Yt computed this way may be compared with those based on the ARIMA (1,1,0)

process of Section 1. Since the AR(1)- coefficient of the latter process was estimated to be

0.67, the variance of this process Yt grows much slower with time than the variance of the

exponential cumulated random walk Yt of this section. Thus the prediction intervals of the

random walk-based process grow faster than those of the ARIMA-based process. Yet I found

that the prediction intervals for the two processes agreed quite well in the short run. For

instance, the 67% interval and the 95% interval of the random walk-based process in 2010

were equal to [1.39, 2.49] and [1.05, 3.29], respectively; those of the ARIMA-based process

were slightly narrower: [1.42, 2.46] and [1.09, 3.21], respectively. In the medium and long

run however, the random walk-based process resulted in prediction intervals that were much

wider than those of the ARIMA-based process, for the reason just mentioned. Stated
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differently, the innovation variance σ2 of the random walk-based process had to be reduced

from 0.000703 to 0.00032 and 0.00021, in order to produce comparable prediction intervals in

2030 and 2050, respectively.

I have analysed the expected value and the standard deviation of Yt as a function of the ceiling

b, for the short-term (2010), the medium-term (2030), and the long-term (2050) situation.

Thus I computed the two statistics for the Yt-process in these three years based on the

assumptions σ2=0.000703, σ2=0.00032, and σ2=0.00021, respectively. Figure 2 shows the

results. Very remarkably, values for the ceiling b higher than approximately 2.7 children per

woman have little or no impact on the expected value and the standard deviation of Yt. This is

explained by the fact that, even for the largest value of the innovation variance σ2 (i.e. σ2

=0.000703) the probability of non-absorption (2Φ(u)-1) 55 years ahead is .97 or more, as soon

as b exceeds 2.3. Even when b is as low as 2.0, the probability of non-absorption is still .88 at

time t=4, and higher for shorter and longer durations. Hence the bound b is hardly effective.

[Figure 2. Expected value and standard deviation of Yt as a function of the ceiling b]

It should be noted that the findings reported here are quite sensitive for the choice of the

initial increment z0. If z0 is increased from ln(1.87/1.8704) = -0.00021 to ln(1.87/1.86) =

0.00536, say, the threshold b, i.e. that value of b beyond which the standard deviation of Yt

hardly changes, moves up from 2.7 to 3.1 children per woman. More formally, the impact of

z0 can be analysed as follows. The standard deviation of Yt depends on the ceiling b: sdYt =

sdYt(b), but for large enough b it is independent of the ceiling (in practice for b>6). The latter

standard deviation may be called the equilibrium value. For a certain level of b, the standard

deviation is at 95 per cent of its equilibrium value. Denote this threshold level of b as b*. For

instance, in Figure 2, the equilibrium level of the standard deviation in 2010 (σ2 =0.000703) is

0.54. At b=b*=2.25, the standard deviation is 0.95 per cent of that equilibrium value, or 0.51.

Table 1 illustrates that the threshold level b* increases by 0.3 to 0.9 children per woman when

z0 increases by 0.005. The acceleration is stronger for small innovation variance. Given the

fact that the Norwegian TFR in 1995 was 1.87, a z0 equal to 0.01 would imply a TFR of 1.85

in 1994. Thus for small increases in the TFR, the threshold b* moves fast to higher levels,

although it remains below 4 children per woman..
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Table 1. Threshold levels b* and corresponding standard deviation values of Yt for various
choices of the initial increment z0

σ2=0.000703 (2010) σ2=0.00021 (2050)

z0 -0.005 0 0.005 0.01 -0.005 0 0.005 0.01

b* 2.3 2.6 3.1 3.6 2.0 2.4 3.0 3.9

sdYt(b
*) 0.99 1.18 1.41 1.68 0.77 1.01 1.33 1.75

7. Conclusion

The simulations for the ARIMA model mentioned in Section 2 suggested that a ceiling equal

to 4 children per woman is appropriate. In this paper I have demonstrated that when the

underlying process is a random walk, i.e. an AR(1)-proces with autoregressive coefficient

equal to one, choosing a ceiling equal to between 3 and 4 children per woman will not affect

the expected value and the standard deviation of the predicted TFR. Whether the level of the

ceiling b influences the bounds of the predictive interval is a question that could not be

answered here: when the ceiling b becomes effective, the predictive distribution of Ct is no

longer normal, and the form of the distribution is unknown.
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Figure 1. Variance for Brownian motion with ceiling a, and
its components
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Figure 2. Expected value and standard deviation of Y(t), as a function of
ceiling b
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