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Terminology

• Charactering and understanding subnational variation in health
and demographic outcomes is an important public health
endeavor.

• Many outcomes are binary, or public health targets are binary.
• For example, in the Sustainable Development Goals (SDGs),

Goal 3.2 states, “By 2030, end preventable deaths of newborns
and children under 5 years of age, with all countries aiming to
reduce neonatal mortality to at least as low as 12 per 1,000 live
births and under-5 mortality to at least as low as 25 per 1,000
live births”.

• With respect to binary objectives, prevalence is defined as the
proportion of a population who have a specific characteristic in a
given time period.

• Examination of these proportions across space, is known as
prevalence mapping – we may map continuously in space, or
across discrete administrative areas.
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Terminology

• “The problem of small area estimation (SAE) is how to produce
reliable estimates of characteristics of interest such as means,
counts, quantiles, etc., for areas or domains for which only small
samples or no samples are available, and how to assess their
precision.” (Pfeffermann, 2013).

• SAE methods provide one approach to performing prevalence
mapping, for administrative areas.

• “The term geostatistics is a short-hand for the collection of
statistical methods relevant to the analysis of geolocated data, in
which the aim is to study geographical variation throughout a
region of interest, but the available data are limited to
observations from a finite number of sampled locations.” (Diggle
and Giorgi, 2019)

• Model-based geostatistics (MBG) provide another approach to
performing prevalence mapping, over continuous space, though
these continuous surfaces can be averaged for area-level
inference.
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Overview of Lecture Series

• Data: We consider the situation in which the available data arise
from surveys with a complex design.

• A Problem: If small sample sizes in some areas/time periods,
there is high instability. In the limit, there may be no data...

• Survey Sampling Methodology: Required for design and
analysis.

• Shrinkage and Spatial Smoothing: To reduce instability, use the
totality of data to smooth both locally and globally over space.

• Bayesian Modeling: Is convenient for encoding notions of
smoothing, and for carrying out inference.

• Implementation: In R programming environment, using the
SUMMER package.

• Visualization: Maps of uncertainty, accompanied with
uncertainty, produced using the GIS capabilities of R.
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Overview of Lecture Series

Lectures:

• Complex Survey Data.
• Bayesian Smoothing Models.
• Prevalence Mapping.
• Implementation, with examples, via the SUMMER package –

lectures by Zehang Richard Li.

Website:

http://faculty.washington.edu/jonno/space-station.html

The examples presented will mostly concern subnational estimation
of under-5 mortality risk (U5MR).

7 / 70

http://faculty.washington.edu/jonno/space-station.html


Demographic Health Surveys

• Motivation: In many developing world countries, vital registration
is not carried out, so that births and deaths go unreported.

• Objective: To provide reliable estimates of demographic/health
indicators at the (say) Admin1 or Admin2 level1, at which policy
interventions are often carried out.

• We will illustrate using data from Demographic Health Surveys
(DHS).

• DHS Program: Typically stratified cluster sampling to collect
information on population, health, HIV and nutrition; more than
300 surveys carried out in over 90 countries, beginning in 1984.

• The Problem: Data are sparse, at the Admin2 level in particular.
• SAE: Leverage space-time similarity to construct a Bayesian

smoothing model.

1Admin0 = country level boundaries, Admin1 = first level administrative boundaries
(states in US), Admin 2 = second level administrative boundaries (counties in US)

8 / 70



2014 Kenyan DHS

• The 3 most recent Kenya DHS
were carried out in 2003, 2008
and 2014.

• The DHS use stratified two-stage
cluster sampling. The strata
consist of urban/rural crossed
with geographic administrative
strata.

• In each strata, enumeration
areas (EAs ) are selected with
probability proportional to size
using a sampling frame
developed from the most recent
census.

• In each of the clusters,
households are selected. Within
each household, women between
the ages of 15 and 49 are
interviewed.
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Figure 1: Cluster locations in three
Kenya DHS, with county boundaries.
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2014 Kenya DHS

• We will focus on the 2014
Kenya DHS, in which the
stratification was county (47)
and urban/rural (2).

• Nairobi and Mombasa are
entirely urban, so there are 92
strata in total.

• We have data from a total of
1584 EAs across the 92
strata. In the second stage,
40,300 households are
sampled.

• DHS provides sampling
(design) weights, assigned to
each individual in the dataset.

id

Baringo

Bomet

Bungoma

Busia

Elgeyo−Marakwet

Embu

Garissa

Homa Bay

Isiolo

Kajiado

Kakamega

Kericho

Kiambu

Kilifi

Kirinyaga

Kisii

Kisumu

Kitui

Kwale

Laikipia

Lamu

Machakos

Makueni

Mandera

Marsabit

Meru

Migori

Mombasa

Murang'a

Nairobi

Nakuru

Nandi

Narok

Nyamira

Nyandarua

Nyeri

Samburu

Siaya

Taita Taveta

Tana River

Tharaka−Nithi

Trans Nzoia

Turkana

Uasin Gishu

Vihiga

Wajir

West Pokot

Figure 2: Counties of Kenya.
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Aim: Inference for U5MR over Counties and Years

Figure 3: SAE estimates of under-5 mortality risk, across time, and Kenyan
counties. These estimates were obtained using the SUMMER package.
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2013 Nigeria DHS

• As a second DHS example, we
consider measles vaccination
rates in Nigeria, from the 2013
Nigerian DHS.

• Across African countries, there is
great variability in the number of
Admin2 areas.

• In Nigeria, the Admin2 areas
correspond to Local Government
Areas (LGAs) and there are 774
in total – with such a large
number there are many LGAs
with little/no data.

• There are no clusters in 255
LGAs.

Figure 4: Vaccination prevalence for
LGAs in Nigeria. LGAs with no data
are in white.
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Small Area Estimation

Specific methods are required for spatial data due to the dependence
between points in space.

Within public and global health data different spatial methods are
available for different endeavors:

• Disease Mapping: Spatial dependence is a virtue that we can
exploit.

• Spatial Regression: Spatial dependence is a nuisance –
confounding by location.

• Cluster Detection: Spatial pattern of data is of primary interest.
• Assessment of Clustering: Spatial pattern of data is of primary

interest.
• Small Area Estimation: Spatial dependence is a virtue that we

can exploit.

Spatial methods often hinge upon some form of smoothing.
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Smoothing/Penalization

• When looking at estimates over
space or time, we want to know if
the differences we see are “real”,
or simply reflecting sampling
variability.

• In data sparse situations, when
one expects similarity, smoothing
local patterns (in time, space, or
both) can be highly beneficial.

• This can equivalently be thought
of penalization, in which large
deviations from “neighbors”,
suitably defined, are discouraged.

• We start with a temporal
example, since time is easier to
think about! One dimensional
and an obvious direction...
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Figure 5: Nile data with random
walk of order 1 fits under different
smoothing parameter choice.
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Temporal Smoothing for Ecuador U5MR
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Figure 6: Yearly weighted estimates of under-5 mortality in Ecuador, with
95% uncertainty intervals for weighted and IHME, and 90% for UN IGME.
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Two Approaches to Prevalence Mapping

• Model at the area level
using a discrete spatial
model. These are the SAE
models that are
implemented in the
SUMMER package.

• Model at the point level
using a continuous spatial
model. Model-based
geostatistics is a popular
approach.
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2013 Nigeria DHS
• Recall that almost a third of the LGAs in Nigeria have no data

(left plot below).
• We fit a discrete spatial model in which the rates in neighboring

areas (as defined by sharing a boundary) are “encouraged” to be
similar (right plot below).

Figure 7: Vaccination prevalences in Nigeria in 2013. Left: Weighted
estimates. Right: Estimates from a discrete spatial smoothing model.
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Survey Sampling
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Outline

Many national surveys employ stratified cluster sampling, also known
as multistage sampling, so that’s where we’d like to get to.

We will discuss:
• Simple Random Sampling (SRS).
• Stratified SRS.
• Cluster sampling.
• Multistage sampling.

First, we briefly explain why taking account of the survey design (data
collection process) is important.
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Acknowledging the Design: Stratification

Figure 8: In the DHS,
stratification is based on
counties (the solid lines) and
on a binary urban/rural
variable (urban indicated in
blue, the white is rural).

• Suppose we are interested in the
proportion of women aged 20–29
who complete secondary education
– this is much higher in urban areas

• If we oversample urban areas but
ignore this when we analyze the data
we will overestimate the fraction of
women who complete secondary
education, i.e., we will introduce bias.

• Taking into account of the
stratification also reduces the
variance of the estimator.

• In the design-based approach to
inference, the stratification is
accounted for via design weights.

• In the model-based approach to
inference, the stratification is
accounted for in the mean model.

20 / 70



Acknowledging the Design: Cluster Sampling

• The DHS also employs cluster sampling, in which multiple units
(individuals) within the same cluster are interviewed.

• Units within the same cluster tend to be more similar than units in
different clusters, which reduces the information content of the
clustered sample, relative to independently sampled units.

• The dependence can be measured via the intraclass correlation
coefficient.

• In the design-based approach to inference, the clustering is
accounted for in the variance calculation that is carried out.

• In the model-based approach to inference, the clustering is
accounted for by including a cluster-specific random effect in the
model.
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Modes of Inference

• Surveys can be analyzed using design- and model-based
inference. In this lecture, the former will be focused upon.

• The target of inference are the set of means for areas indexed by
i (e.g., Admin2 regions).

• Let yik be the binary indicator on the k -th unit sampled in area i ,
for k ∈ Si (the set of selected individuals) and i = 1, . . . ,n.

Design-Based Inference
• Labels Si of sampled units

are random.
• Responses yik are fixed.
• Asymptotic inference,

perhaps using resampling.

Model-Based Inference
• Condition on units that are

actually sampled.
• Responses Yik are random.
• Exact inference, conditional

on model.

22 / 70



Model-Based Inference

Suppose we carry out stratified cluster sampling, with one-stage of
clusters, and the outcome is continuous.

Let yck be the outcome from sampling unit k in sampled cluster c, and
sc the location of cluster c,

Suppose the data were collected within two strata, urban and rural.

A model-based approach to inference might begin with

Yck = α+ γI(sc ∈ rural ) + εc + υck ,

where
• α is the mean for urban and α+ γ is the mean for rural.
• within-cluster dependence is modeled via the random effect
εc ∼iid N(0, σ2

ε ).
• Measurement error is υck ∼iid N(0, σ2

υ).
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Design-Based Inference

• We will focus on design-based inference: in this approach the
population values of the variable of interest:

y1, . . . , yN

are viewed as fixed, while the indices of the individuals who are
sampled are random.

• Imagine a population of size N = 4 and we sample n = 2
• Possible samples, with sampled unit indices in red and

non-sampled in blue: y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

y1, y2, y3, y4

• Different designs follow from which probabilities we assign to
each of these possibilities.
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Design-Based Inference

Design-based inference is frequentist, so that properties are based
on hypothetical replications of the data collection process; hence, we
require a formal description of the replication process.

A complex random sample may be:
• Better than a simple random sample (SRS) in the sense of

obtaining the same precision at lower cost.
• May be worse in the sense of precision, but be required

logistically.
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Probability Samples

Notation for random sampling, in a single population (and not
distinguishing areas):
• N is population size.
• n is sample size.
• πk is the sampling probability for a unit (which will often

correspond to a person) k , k = 1, . . . ,N.

Random does not mean “equal chance”, but means that the choice
does not depend on variables/characteristics (either measured or
unmeasured), except as explicitly stated via known sampling
probabilities.

For example, in stratified random sampling, the probabilities of
selection differ, in different strata.
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Common sampling designs

• Simple random sampling: Select each individual with probability
πk = n/N.

• Stratified random sampling: Use information on each individual
in the population to define strata h, and then sample nh units
independently within each stratum.

• Probability-proportional-to-size sampling: Given a variable
related to the size of the sampling unit, Zk , on each unit in the
population, sample with probabilities πk ∝ Zk .

• Cluster sampling: All units in the population are aggregated into
larger units called clusters, known as primary sampling units
(PSUs). Clusters are then sampled from this the set of PSUs,
with units within these clusters being subsequently sampled.

• Multistage sampling: Stratified cluster sampling, with multiple
levels of clustering.
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Probability Samples

• The label probability
sample is often used
instead of random
sample.

• Non-probability samples
cannot be analyzed with
design-based
approaches, because
there are no πk .

Non-probability sampling approaches include:

• Convenience sampling (e.g., asking for
volunteers). Also known as accidental or
haphazard sampling.

• Purposive (also known as judgmental)
sampling in which a researcher uses
their subject knowledge to select
participants (e.g, selecting an “average”
looking individual).

• Quota sampling in which quotas in
different groups are satisfied (but unlike
stratified sampling, probability sampling
is not carried out, for example, the
interviewer may choose friendly looking
people!).
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Probability Samples: Point Estimation

For design-based inference:

• To obtain an unbiased estimator, every individual k in the
population needs to have a non-zero probability πk of being
sampled, k = 1, . . . ,N.

• To carry out inference, this probability πk must be known only for
every individual in the sample.

• So not needed for the unsampled individuals, which is key to
implementation, since we will usually not know the sampling
probabilities for those not sampled.

29 / 70



Probability Samples: Variance Estimation

For design-based inference:

• To obtain a form for the variance of an estimator: for every pair of
units, k and l , in the sample, there must a non-zero probability of
being sampled together, call this probability, πkl for units k and l ,
k = 1, . . . ,N, l = 1, . . . ,N, k 6= l .

• The probability πkl must be known for every pair in the sample.
• in practice, these are often approximated, or the variance is

calculated via a resampling technique such as the jackknife.

30 / 70



Inference

• Suppose we are interested in a variable denoted y , with the
population values being y1, . . . , yN .

• Random variables will be represented by upper case letters, and
constants by lower case letters.

• Finite population view: We have a population of size N and we
are interested in characteristics of this population, for example,
the mean:

yU =
1
N

N∑
k=1

yk .
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Model-Based Inference

• Infinite population view: The population variables are drawn from
a hypothetical distribution, with mean µ.

• In the model-based view, Y1, . . . ,YN are random variables and
properties are defined with respect to p(·); often we say Yk are
independent and identically distributed (iid) from p(·).

• As an estimator of µ, we may take the sample mean:

µ̂ =
1
n

n∑
k=1

Yk .

• µ̂ is a random variable because Y1, . . . ,Yn are each random
variables.

• Assume Yk are iid observations from a distribution, p(·), with
mean µ and variance σ2.

• The sample mean is an unbiased estimator, and has variance
σ2/n.
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Model-Based Inference

• Unbiased estimator:

E[µ̂] = E

[
1
n

n∑
k=1

Yk

]
=

1
n

n∑
k=1

E [Yk ]︸ ︷︷ ︸
=µ

=
1
n

n∑
k=1

µ = µ

• Variance:

var(µ̂) = var

(
1
n

n∑
k=1

Yk

)
=︸︷︷︸
iid

1
n2

n∑
k=1

var (Yk )︸ ︷︷ ︸
=σ2

=
1
n2

n∑
k=1

σ2 =
σ2

n
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Model-Based Inference

• The variance σ2 is unknown so we estimate by the unbiased
estimator

s2 =
1

n − 1

n∑
k=1

(yk − µ̂)2.

• A 95% asymptotic confidence interval is

µ̂± 1.96× s√
n
.

• In practice, “asymptotic” means that n is sufficiently large that the
sampling distribution of µ̂ (i.e., it’s distribution in hypothetical
repeated samples) is close to normal.
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Design-Based Inference

• In the design-based approach to inference the y values are
treated as unknown but fixed.

• To emphasize: the y ’s are not viewed as random variables, so we
write

y1, . . . , yN ,

and the randomness, with respect to which all procedures are
assessed, is associated with the particular sample of individuals
that is selected, call the random set of indices S.

• Minimal reliance on distributional assumptions.
• Sometimes referred to as inference under the randomization

distribution.
• In general, the procedure for selecting the sample is under the

control of the researcher.

35 / 70



Design-Based Inference

• Define design weights as

wk =
1
πk
.

• The basic estimator is the weighted mean (Horvitz and
Thompson, 1952; Hájek, 1971)

ŷU =

∑
k∈S wk yk∑

k∈S wk
.

• This is an estimator of the finite population mean yU .
• So long as the weights are correctly calculated, and the sample

size is not small, this estimator is appealing, though it may have
high variance, if n is small.
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Simple Random Sample (SRS)

• The simplest probability sampling technique is simple random
sampling without replacement.

• Suppose we wish to estimate the population mean in a particular
population of size N.

• In everyday language: consider a population of size N; a random
sample of size n ≤ N means that any subset of n people from
the total number N is equally likely to be selected.
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Simple Random Sample (SRS)

• We sample n people from N, choosing each person
independently at random and with the same probability of being
chosen:

πk =
n
N
,

k = 1, . . . ,N.
• Since sampling without replacement the joint sampling

probabilities are

πkl =
n
N
× n − 1

N − 1
for k , l = 1, . . . ,N, k 6= l .

• In this situation:
• The sample mean is an unbiased estimator.
• The uncertainty, i.e. the variance, of the estimator can be easily

estimated.
• Unless n is quite close to N, the uncertainty does not depend on N,

only on n.
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The Indices are Random!

• Example: N = 4,n = 2 with SRS. There are 6 possibilities:

{y1, y2}, {y1, y3}, {y1, y4}, {y2, y3}, {y2, y4}, {y3, y4}.

• The random variable describing this design is S, the set of
indices of those selected.

• The sample space of S is

{(1,2), (1,3), (1,4), (2,3) (2,4), (3,4)}

and under SRS, the probability of sampling one of these
possibilities is 1/6.

• The selection probabilities are

πk = Pr( individual i in sample ) =
3
6
=

1
2

which is of course n
N .

• In general, we can work out the selection probabilities without
enumerating all the possibilities!
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Design-Based Inference

• Fundamental idea behind design-based inference: An individual
with a sampling probability of πk can be thought of as
representing wk = 1/πk individuals in the population.

• Example: in SRS each person selected represents N
n people.

• The sum of the design weights,∑
k∈S

wk = n × N
n

= N,

is the total population.
• Sometimes the population size may be unknown and the sum of

the weights provides an unbiased estimator.
• In general, examination of the sum of the weights can be useful

as if it far from the population size (if known) then it can be
indicative of a problem with the calculation of the weights.
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Estimator of yU and Properties under SRS

• The weighted estimator is

ŷU =

∑
k∈S wk yk∑

k∈S wk

=

∑
k∈S

N
n yk∑

k∈S
N
n

=

∑
k∈S yk

n
= y ,

the sample mean, which is reassuring under SRS!
• This is an unbiased estimator, i.e.,

E
[
ŷU

]
= yU ,

where we average over all possible samples we could have
drawn, i.e., over S.
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Unbiasedness

• For many designs:
∑

k∈S wk = N so we examine the estimator

ŷU =
1
N

∑
k∈S

wk yk .

• There’s a neat trick in here, we introduce an indicator random
variable of selection Ik ∼ Bernoulli(πk ):

E
[
ŷU

]
= E

[
1
N

∑
k∈S

wk yk

]
︸ ︷︷ ︸

S is random in here

= E

[
1
N

N∑
k=1

Ik wk yk

]
︸ ︷︷ ︸

Ik are random in here

=
1
N

N∑
k=1

E [Ik ]wk yk =
1
N

N∑
i=1

πk
1
πk

yk =
1
N

N∑
i=1

yk = yU
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Estimator of yU and Properties under SRS

• It can be shown that the variance is

var(y) =
(

1− n
N

) S2

n
, (1)

where,

S2 =
1

N − 1

N∑
k=1

(yk − yU)
2.

• Contrast (1) with the model-based variance which is σ2/n.
• The factor

1− n
N

is the famous finite population correction (fpc) factor.
• Because we are estimating a finite population mean, the greater

the sample size relative to the population size, the more
information we have (relatively speaking), and so the smaller the
variance.

• In the limit, if n = N we have no uncertainty, because we know
the population mean!
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Estimator of yU and Properties under SRS

• The variance of the estimator depends on the population
variance S2, is unknown, and we estimate using the unbiased
estimator:

s2 =
1

n − 1

∑
k∈S

(yk − y)2.

• Substitution into (1) gives an unbiased estimator of the variance:

v̂ar(y) =
(

1− n
N

) s2

n
. (2)

• The standard error is

SE(y) =

√(
1− n

N

) s2

n
.

• Note: S2 is not a random variable but s2 is.
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Estimator of yU and Properties under SRS

• If n, N and N − n are “sufficiently large”2, a 95% asymptotic
confidence interval for yU is

y ± 1.96×
√

1− n
N

s√
n
. (3)

• The interval given by (3) is random (across samples) because y
and s2 (the estimate of the variance) are random.

• In practice therefore, if n� N, we obtain the same confidence
interval whether we take a design- or a model-based approach to
inference (though the interpretation is different).

2so that the normal distribution provides a good approximation to the sampling
distribution of the estimator
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Stratified Sampling

• Simple random samples are rarely taken in surveys because
they are logistically difficult and there are more efficient designs
for gaining the same precision at lower cost.

• Stratified random sampling is one way of increasing precision
and involves dividing the population into groups called strata and
drawing probability samples from within each one, with sampling
from different strata being carried out independently.

• An important practical consideration of whether stratified
sampling can be carried out is whether stratum membership is
known for every individual in the population, i.e., we need a
sampling frame containing the strata variable.
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Rationale for Stratified Sampling

Lohr (2010, Section 3.1) provides a good discussion of the benefits of
stratified sampling, we summarize here.

• Protection from the possibility of a “really bad sample”, i.e., very
few or zero samples in certain stratum giving an
unrepresentative sample.

• Obtain known precision required for subgroups (domains) of the
population – this is usual for the DHS.

• For example, from the Kenya DHS sampling manual (Kenya
National Bureau of Statistics, 2015):

“The 2014 KDHS was designed to produce representative
estimates for most of the survey indicators at the national level,
for urban and rural areas separately, at the regional (former
provincial) level, and for selected indicators at the county level.”
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Rationale for Stratified Sampling

• Flexible since sampling frames can be constructed differently in
different strata.

• For example, one may carry out different sampling in urban and
rural areas.

• More precise estimates can be obtained if stratum can be found
that are associated with the response of interest, for example,
age and gender in studies of human disease.

• In a national study, the most natural form of sampling may be
based on geographical regions.

• Due to the independent sampling in different stratum, variance
estimation is straightforward, as long as within-stratum sampling
variance estimators are available.

48 / 70



Example: Washington State

• According to the census there were 2,629,126 households in
Washington State in the period 2009–2013.

• Consider a simple random sample (SRS) of 2000 households, so
that each household has a

2000
2629126

= 0.00076,

chance of selection.
• Suppose we wish to estimate characteristics of household in all

39 counties of WA.

49 / 70



Example: Washington State

• King (highlighted left) and Garfield (highlighted right) counties
had 802,606 and 970 households so that under SRS we will
have, on average, about 610 households sampled from King
County and about 0.74 from Garfield county.

• The probability of having no-one from Garfield County is about
22% (binomial experiment), and the probability of having more
than one is about 45%.

• If we took exactly 610 from King and 1 (rounding up) from
Garfield we have an example of proportional allocation, which
would not be a good idea given the objective here.

• Stratified sampling would allow control of the number of samples
in each county.
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Notation

• Stratum levels are denoted
h = 1, . . . ,H, so H in total.

• Let N1, . . . ,NH be the known
population totals in the stratum
with

N1 + · · ·+ NH = N,

so that N is the total size of the
population.

• In stratified simple random
sampling, the simplest from of
stratified sampling, we take a
SRS from each stratum with nh

samples being randomly taken
from stratum h, so that the total
sample size is

n1 + · · ·+ nH = n.

• We can view stratified SRS as carrying
out SRS in each of the H stratum; we let
Sh represent the probability sample in
stratum h.

• We also let S refer to the overall
probability sample.
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Estimators

• The sampling probabilities for unit k in strata h are

πhk =
nh

Nh
,

which do not depend on k .
• Therefore the design weights are

whk =
Nh

nh
.

• Note that:

H∑
h=1

∑
k∈Sh

whk =
H∑

h=1

∑
k∈Sh

Nh

nh
=

H∑
h=1

nh
Nh

nh
= N,

so that summing over the weights recovers the population size.
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Estimators

• Weighted estimator:

ŷU =

∑H
h=1

∑
k∈Sh

whk yhk∑H
h=1

∑
k∈Sh

whk
=

H∑
h=1

Nh

N
yh

where

yh =

∑
k∈Sh

yhk

nh
.

• Since we are sampling independently from each stratum using
SRS, we have3

var(ŷU) =
H∑

h=1

(
Nh

N

)2(
1− nh

Nh

)
s2

h
nh
, (4)

where the within stratum variances are:

s2
h =

1
nh − 1

∑
k∈Sh

(yhk − yh)
2.

3using the variance formula for SRS, (2)
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Weighted Estimation

Recall: The weight wk can be thought of as the number of people in
the population represented by sampled person k .

Example 1: Simple Random Sampling
Suppose an area contains 1000 people:
• Using simple random sampling (SRS), 100 people are sampled.
• Sampled individuals have weight wk = 1/πk = 1000/100 = 10.

Example 2: Stratified Simple Random Sampling
Suppose an area contains 1000 people, 200 urban and 800 rural.
• Using stratified SRS, 50 urban and 50 rural individuals are

sampled.
• Urban sampled individuals have weight

wk = 1/πk = 200/50 = 4.
• Rural sampled individuals have weight

wk = 1/πk = 800/50 = 16.
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Weighted Estimation

Example 2: Stratified Simple Random Sampling
Suppose an area contains 1000 people, 200 urban and 800 rural.
• Urban risk = 0.1.
• Rural risk = 0.2.
• True risk = 0.18.

Take a stratified SRS, 50 urban and 50 rural individuals sampled:

• Urban sampled individuals have weight 4; 5 cases out of 50.
• Rural sampled individuals have weight 16; 10 cases out of 50.
• Simple mean is 15/100 = 0.15 6= 0.18.
• Weighted mean is

4× 5 + 16× 10
4× 50 + 16× 50

=
180
1000

= 0.18.
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Motivation for Cluster Sampling

For logistical reasons, cluster sampling is an extremely common
design that is often used for government surveys.

Two main reasons for the use of cluster sampling:
• A sampling frame for the population of interest does not exist,

i.e., no list of population units.
• The population units have a large geographical spread and so

direct sampling is not logistically feasible to implement for
in-person interviews.

• It is far more cost effective (in terms of travel costs, etc.) to
cluster sample.
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Terminology

• In single-stage cluster sampling or one-stage cluster sampling,
the population is grouped into subpopulations (as with stratified
sampling) and a probability sample of these clusters is taken,
and every unit within the selected clusters is surveyed.

• In one-stage cluster sampling either all or none of the elements
that compose a cluster (PSU) are in the sample.

• The subpopulations are known as clusters or primary sampling
units (PSUs).

• In two-stage cluster sampling, rather than sample all units within
a PSU, a further cluster sample is taken; the possible groups to
select within clusters are known as secondary sampling units
(SSUs).

• This can clearly be extended to multistage cluster sampling.
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Differences Between Cluster and Stratified sampling

Stratified Random Sampling One-Stage Cluster Sampling
A sample is taken from every Observe all elements only within the
stratum sampled clusters
Variance of estimate of yU The cluster is the sampling unit and the
depends on within strata variability more clusters sampled the smaller the

variance – which depends primarily on
between cluster means

For greatest precision, we want low For greatest precision, high within-cluster
within-strata variability but large variability and similar cluster means.
between-strata variability
Precision generally better than SRS Precision generally worse than SRS
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Heterogeneity

• The reason that cluster sampling loses efficiency over SRS is
that within clusters we only gain partial information from
additional sampling within the same cluster, since within clusters
two individuals tend to be more similar than two individuals within
different clusters.

• The similarity of elements within clusters is due to unobserved
(or unmodeled) variables.

• The design effect (deff) is often to summarize the effect on the
variance of the design:

deff =
Variance of estimator under design
Variance of estimator under SRS

,

where in the denominator we use the same number of
observations as in the complex design in the numerator.
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Estimation for One-Stage Cluster Sampling

• We suppose that a SRS of n PSUs is taken.
• The probability of sampling a PSU is n/N, and since all the

SSUs are sampled in each selected PSU we have selection
probabilities and design weights:

πik = Pr( SSU k in cluster i is selected ) =
n
N

wik = Design weight for SSU k in cluster i =
N
n
.

Let S represent the set of sampled clusters.
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Estimation for One-Stage Cluster Sampling

• Let M0 =
∑N

i=1 Mi be the total number of secondary sampling
units (SSUs), i.e., elements in the population, so the population
mean is

yU =
1

M0

N∑
i=1

Mi∑
k=1

yik

• An unbiased estimator is

ŷU =

∑
i∈S
∑

k∈Si
wik yik

M0
.

• Then,

v̂ar(ŷU) =
N2

M2
0

(
1− n

N

) s2
T
n

where s2
T is the estimated variance of the PSU totals.
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Two-Stage Cluster Sampling with Equal-Probability
Sampling

It may be wasteful to measure all SSUs in the selected PSUs, since
the units may be very similar and so there are diminishing returns on
the amount of information we obtain.

We discuss the equal-probability two stage cluster design:

1. Select a SRS of n PSUs from the population of N PSUs.
2. Select a SRS of mi SSUs from each selected PSU, the

probability sample collected will be denoted Si .
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Two-Stage Cluster Sampling Weights

• The selection probabilities are:

Pr( k -th SSU in i-th PSU selected ) = Pr( i-th PSU selected )

× Pr( k -th SSU | i-th PSU selected )

=
n
N
× mi

Mi

• Hence, the weights are

wik = π−1
ik =

N
n
× Mi

mi
.

• An unbiased estimator is

ŷU =

∑
i∈S
∑

k∈Si
wik yik

M0
.

• Variance calculation is not trivial, and requires more than
knowledge of the weights.
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Variance Estimation for Two-Stage Cluster Sampling

• In contrast to one-stage cluster sampling we have to
acknowledge the uncertainty in both stages of sampling; in
one-stage cluster sampling the totals ti are known in the sampled
PSUs, whereas in two stage sampling we have estimates t̂i .

• In Lohr (2010, Chapter 6) it is shown that

var(ŷU) =
1

M2
0

 N2
(

1− n
N

) s2
T
n︸ ︷︷ ︸

One-stage cluster variance

+
N
n

∑
i∈S

(
1− mi

Mi

)
M2

i
s2

i
mi︸ ︷︷ ︸

Two-stage cluster variance


(5)

where
• s2

T are the estimated variance of the cluster totals,
• s2

i is the estimated variance within the i-th PSU.

• In most software packages, the second term in (5) is ignored,
since it is small when compared to the first term, when N is large.

64 / 70



The Jackknife

• The jackknife is a very general technique for calculating the
variance of an estimator.

• The basic idea is to delete portions of the data, and then fit the
model on the remainder – if one repeats this process for different
portions, one can empirically obtain the distribution of the
estimator.

• The key is to select the carefully select the portion of the data so
that the design is respected.

• We describe in the context of multistage cluster sampling.
• Observations within a PSU should be kept together when

constructing the data portions, which preserves the dependence
among observations in the same PSU.
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The Jackknife for Multistage Cluster Sampling

• Assume we have H strata and nh PSUs in strata h, and assume
PSUs are chosen with replacement.

• To apply the jackknife, delete one PSU at a time.
• Let µ̂(hi) be the estimator when PSU i of stratum h is omitted.
• To calculate µ̂(hi) we define a new weight variable:

wk(hi) =


wk(hi) if observation k is not in stratum h
0 if observation k is in PSU i of stratum h

nh
nh−1 wk if observation k is not in PSU i but in stratum h

Then we can use the weights wk(hi) to calculate µ̂(hi) and

V̂JK(µ̂) =
H∑

h=1

nh − 1
nh

nh∑
i=1

(µ̂(hi) − µ̂)2.
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Multistage Sampling in the DHS

• A common design in national surveys is multistage sampling, in
which cluster sampling is carried out within strata.

• DHS Program: Typically, 2-stage stratified cluster sampling:
• Strata are urban/rural and region.
• Enumeration Areas (EAs) sampled within strata (PSUs).
• Households within EAs (SSUs).

• Weighted estimators are used and a common approach to
variance estimation is the jackknife (Pedersen and Liu, 2012)

• In later lectures, we will show how model-based inference can be
carried out for the DHS.
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Discussion
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Discussion

• The majority of survey sampling texts take a design-based view
of inference – this is a different paradigm to model-based
inference, for which most spatial statistical models were
developed!

• Later we will see how spatial models can incorporate the survey
design.

• Variance estimation that accounts for the design has been a
topic of much research.

• However, for the major designs (e.g., SRS, stratified SRS, cluster
sampling, multistage sampling), weighted estimates and their
variances are available within all the major statistical packages.

• When the variance is large, because of small sample sizes, we
would like to use smoothing methods, with Bayes being a
convenient way to do this – this is the topic of the next lecture.
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