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Motivation for Smoothing Models
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Smoothing/Penalization

• When looking at estimates over space or time, we want to know if
the differences we see are “real”, or simply reflecting sampling
variability.

• To this end, we formulate statistical approaches to model the
totality of data, which allows us to disentangle signal from
sampling variability.

• In data sparse situations, when one expects similarity, smoothing
data locally (in time, space, or both) can be highly beneficial.

• This can equivalently be thought of penalization, in which large
deviations from “neighbors”, suitably defined, are discouraged.

• We start with temporal modeling, since time is easier to think
about! One dimensional and an obvious direction.

• In this lecture, we will often take modeling a prevalence as our
generic objective.

• We suppose data are collected via simple random sampling, so
that we will not consider methods for data from complex surveys
– that’s coming in the next lecture.

4 / 63



Motivation for Smoothing: Temporal Case

• Temporal setting: Even if the
underlying prevalence is the
same over time, we will see
differences in the empirical
estimates.

• Figure 1 demonstrates: We
sampled counts Yt over
t = 1, . . . ,60 months as

Yt |p ∼ Binomial(n,pt),

with n = 10,20,200 and
pt = 0.2 (shown in blue).

• In the top plot in particular, we
might conclude large temporal
variation, but it’s a mirage, all
we are seeing is sampling
variation.
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Figure 1: Simulated prevalence
estimates over time.

5 / 63



Motivation for Smoothing: Temporal Case

• Figure 2 summarizes
estimates from a second
simulation.

• The sample sizes are again
n = 10,20,200 but now there
is a non-constant temporal
pattern (shown in blue).

• For these data, we would not
want to oversmooth and
remove the trend.

• Later we will apply temporal
smoothing models to these
two sets of data.
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Figure 2: Simulated prevalence
estimates over time.
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Motivation for Smoothing: Spatial Case

• We repeat the previous simulation example, but now for spatial
data.

• Counts Yi are simulated for each area i from a binomial
distribution with prevalence pi and the same sample size n in
each area:

Yi | pi ∼ Binomial(n,pi).

• We look at varying sample sizes n = 50,100,500, so that the
influence of sampling variability can be examined.

• We examine two sets of simulated data:
• Figure 3: Constant prevalence.
• Figure 4: Spatially varying prevalence.
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Figure 3: Prevalence estimates over space for simulated data with sample
sizes of n = 50, 100, 500. True prevalence is 0.2 in all areas.
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Figure 4: Prevalence estimates over space for simulated data with sample
sizes of n = 50, 100, 500. True prevalence is spatially varying (top left).
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Smoothing

When faced with estimation n different quantities of the prevalence
under different conditions, there are three model choices:

• The true underlying prevalences are all the same.
• The true underlying prevalences are distinct but not linked.
• The true underlying prevalences are similar in some sense.

The third option seems plausible when the conditions are related, but
how do we model “similarity”?
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Smoothing

There are a number of
possibilities for smoothing
models:
• The prevalences are

drawn from some common
probability distribution, but
are not ordered in any
way. We refer this as the
independent and
identically distributed, or
IID model. This case
corresponds to penalizing
deviations from an overall
level.

• The prevalences are
correlated over time – this
case corresponds to
penalizing deviations from
a local level.

• These are both examples of
hierarchical or random effects
models — a key element is
estimating the smoothing
parameter.
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Bayesian Inference
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Bayesian Inference
Bayesian modeling is convenient for implementing notions of
smoothing.

There are two key elements that must be specified:
• The sampling model (likelihood) describes the distribution of the

data – this model depends on unknown parameters, that we will
denote θ.

• The prior distribution expresses beliefs about the parameters θ
and provides a mechanism by which penalization/smoothing can
be imposed.

These elements are probabilistically combined via Bayes Theorem:

p(θ|y)︸ ︷︷ ︸
Posterior

∝ L(θ)︸︷︷︸
Likelihood

×π(θ)︸︷︷︸
Prior

.

On the log scale:

log p(θ|y)︸ ︷︷ ︸
Updated Beliefs

= log L(θ)︸ ︷︷ ︸
Sampling Model

+ log π(θ)︸ ︷︷ ︸
Penalization

.
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Bayesian Inference

• In a Bayesian analysis the complete set of unknowns
(parameters) is summarized via the multivariate posterior
distribution – one or two dimensional marginal posterior
distributions can be vizualised.

• The marginal distribution for each parameter may be
summarized via its mean, standard deviation, or quantiles.

• It is common to report the posterior median and a 90% or 95%
posterior range for parameters of interest.

• The range that is reported is known as a credible interval.
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Bayesian Computation

• The computations required for Bayesian inference (integrals) are
often not trivial and may be carried out using a variety of
analytical, numerical and simulation based techniques.

• We use the integrated nested Laplace approximation (INLA),
introduced by Rue et al. (2009).

• R-INLA is a package that implements the INLA approach.
• Book-length treatments on INLA:

• Blangiardo and Cameletti (2015) – space-time modeling.
• Wang et al. (2018) – general modeling.
• Krainski et al. (2018) – advanced space-time modeling.

15 / 63



Bayes Example

• Imagine the data model is normal with an unknown mean µ:

yi | µ ∼ N(µ, σ2),

i = 1, . . . ,n, with σ2 assumed known.
• This is equivalent to:

y | µ ∼ N(µ, σ2/n),

where σ/
√

n is the standard error.
• Suppose a normal prior is appropriate:

µ ∼ N(m, v),

so that values of the mean µ that are (relatively) far from m are
penalized – v is the smoothing parameter, more/less smoothing
if small/big.

• The log posterior is:

log p(µ | y︸ ︷︷ ︸
Updated Beliefs

) = − n
2σ2 (y − µ)

2︸ ︷︷ ︸
Data Model

− 1
2v

(µ−m)2︸ ︷︷ ︸
Penalization

.
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Figure 6: Normal data model with n = 10, y = 19.3 and standard error 1.41.
The prior for µ has mean m =15 and v = 32. The posterior for the parameter
µ is a compromise between the two sources of information: the posterior
mean is 18.5 and the posterior standard deviation is 1.28.
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Temporal Smoothing
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Smoothing over Time

In the simple normal example, we had a single parameter that was
pulled towards the prior mean – now we consider the situation in
which we have multiple parameters, indexed by time, and we wish to
specify a joint prior that encourages similarity between “close-by”
means.

Rationale and overview of models for temporal smoothing:
• We often expect that the true underlying prevalence in a

population will exhibit some degree of smoothness over time.
• A linear trend in time is unlikely to be suitable for more than a

small period of time, and higher degree polynomials can produce
erratic fits.

• Hence, local smoothing is preferred.
• Random walk models have proved successful as local

smoothers.
• And to emphasize again, the choice of smoothing parameter is

crucial.
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Random Walk Models

We use random walk models which encourage the mean of the
response at time t , φt , to be similar to its neighbors.

We will start by describing the model for a continuous, unbounded
variable, i.e., not constrained to lie between 0 and 1 like the
prevalence is – to be concrete we will describe the model in the
context of a logit prevalence.

Random walk models can be described in different (equivalent) ways:

1. Via the joint distribution: p(φ1, . . . , φT ).
2. One-dimensional distributions conditional on the past:

p(φt |φt−1, φt−2, . . .).
3. One-dimensional distributions conditional on neighbors:

p(φt |φ−t) where φ−t = [φ1, . . . , φt−1, φt+1, . . . , φT ] is the full
collection with the t-th entry removed.

The first and third can be easily generalized to spatial processes.
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Random Walk Models

In the first-order random walk model, denoted RW1, the mean of the
logit prevalence at time t , φt , is modeled as a function of its
immediate neighbors via:

φt | φt−1, φt+1, σ
2 ∼ N

(
1
2
(φt−1 + φt+1),

σ2

2

)
,

where σ2 is a smoothing parameter:

• the smoothing parameter is estimated from the data and
determines the extent to which deviations from the neighbors are
penalized,

• small values enforce strong smoothing,
• large values enforce weak smoothing.
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Random Walk Models

• The explicit penalty term for the RW1 model is:

p(φt | φt−1, φt+1, σ
2) ∝ exp

{
− 1

2σ2

[
φt − 1

2 (φt−1 + φt+1)
]2}

.

• Hence:
• Values of φt that are close to 1

2 (φt−1 + φt+1) are favored (higher
density).

• The relative favorability is governed by σ2 – if this variance is small,
then φt can’t stray too far from its neighbors.

• S time step ahead predictions from the RW1 model follow
distribution

φT+S|φ1, . . . , φT , σ
2 ∼ N(φT , σ

2 × S),

so that the level is determined by the last value φT and the
variance increases linearly in S
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Figure 7: Illustration of the RW1 model for smoothing at time 3. The mean of
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•), and deviations from this mean are penalized via the normal distribution
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RW1 Model

• Letting φ = [φ1, . . . , φT ]
T, the form of the prior RW1 density is:

p(φ|σ2) ∝ exp

(
− 1

2σ2

T−1∑
t=1

(φt+1 − φt)
2

)

= exp

(
− 1

2σ2

∑
t∼t′

(φt − φt′)
2

)
= exp

(
−1

2
φTQφ

)
where t ∼ t ′ indicates t is a neighbor of t ′ and the precision is
Q = R/σ2 with

R =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


and zeroes everywhere else.

• This sparsity leads to big gains in computational efficiency.
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RW2 Model

• The second order random walk (RW2) model produces smoother
trajectories than the RW1, and has more reasonable short term
predictions, which is desirable for many health and demographic
indicators.

• The model is defined in terms of second differences:

(φt − φt−1)− (φt−1 − φt−2) ∼ N( 0, σ2 ),

showing that deviations from linearity are discouraged.
• S time step ahead predictions from the RW2 model follow

distribution

φT+S | φ1, . . . , φT , σ
2 ∼

N
(
φT + S(φT − φT−1),

σ2

6
× S(S + 1)(2S + 1)

)
,

so that the mean is a linear function of the values at the last two
time points, and the variance is cubic in the number of periods S,
so blows up very quickly.
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RW2 Model

• Form of the prior RW2 density is:

p(φ|σ2) ∝ exp

(
− 1

2σ2

T−2∑
t=1

(φt+2 − 2φt+1 + φt)
2

)

= exp

(
−1

2
φTQφ

)
where the precision is Q = R/σ2 with

R =



1 −2 1
−2 5 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

· · · · ·
1 −4 6 −4 1

1 −4 5 −2
1 −2 1


and zeroes everywhere else, so again sparse.
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Temporal Smoothing Model Summary

We have three models:

IID MODEL:
φt ∼ N(0, σ2),

smooth towards zero.
RW1 MODEL:

φt − φt−1 ∼ N(0, σ2),

smooth towards the previous value.
RW2 MODEL:

(φt − φt−1)− (φt−1 − φt−2) ∼ N(0, σ2),

smooth towards the previous slope.

The RWs are examples of Gaussian Markov Random Field (GMRF)
models, which have many appealing properties, and are
computationally convenient (Rue and Held, 2005).
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RW Fitting to Simulated Data

• We illustrate fitting with the RW2 model, using the simulated data
seen earlier.

• The model is:

Yt |pt ∼ Binomial(nt ,pt)
pt

1− pt
= exp(α+ φt)

[φ1, . . . , φT ] ∼ RW2(σ2)

σ2 ∼ Prior on Smoothing Parameter
α ∼ Prior on Intercept

• Fit using R-INLA.
• On Figures 11 and 12 the fitted values are shown in red – in both

examples the reconstruction is reasonable.
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Figure 11: Prevalence estimates over time from simulated data, true
prevalence p = 0.2 (blue solid lines). Smoothed random walk estimates in
red.
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Figure 12: Prevalence estimates over time from simulated data, true
prevalence corresponds to curved blue solid line. Smoothed random walk
estimates in red.
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RW2 Model Applied to Ecuador Survey Data
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Figure 13: Yearly RW2 smoothing of weighted estimates of under-5 mortality
in Ecuador, with 95% uncertainty intervals. On the left we apply to data
aggregated over 5 years and on the right by 1 year. The dashed lines on the
right of each plot are projections.
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Spatial Smoothing
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Two Approaches to Spatial Modeling

• Model at the area level
using a discrete spatial
model. These are the SAE
models that are
implemented in the
SUMMER package.

• Model at the point level
using a continuous spatial
model. Model-based
geostatistics is a popular
approach.
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Spatial Models for Binomial Data

Point Data: Suppose we carry out sampling at a cluster with location
sc :

Y (sc)|p(sc) ∼ Binomial(N(sc),p(sc)).

• Discrete spatial random effects:

p(sc) = expit(α+ S(si[sc ])︸ ︷︷ ︸
Discrete
Spatial

+ ei[sc ]︸︷︷︸
Discrete
Random

Noise

),

where i[sc ] is the spatial area within which the cluster at sc lies.
• Continuous spatial random effects:

p(sc) = expit(α+ S(sc)︸ ︷︷ ︸
Continuous

Spatial

+ εc︸︷︷︸
“Nugget”
Random

Noise

).
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Spatial Models for Binomial Data
Aggregate Data: For a count in area i ,

Yi |pi ∼ Binomial(Ni ,pi).

• Discrete spatial random effects:

pi = expit(α+ Si︸︷︷︸
Discrete
Spatial

+ ei︸︷︷︸
Discrete
Random

Noise

).

• Continuous spatial random effects:

pi =

∫
s∈Ai

p(s)d(s) ds

=

∫
s∈Ai

expit( α+ S(s)︸ ︷︷ ︸
Continuous

Spatial

) d(s) ds,

where d(s) is population density at location s.
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The BYM Model

In the popular BYM model Besag, York and Mollié (1991):

pi = expit(α+ Si + ei),

where
• ei ∼iid N(0, σ2

e).
• The spatial effects Si are modeled conditional on the neighbors:

Si |{Sj = sj , j ∼ i}, σ2
s ∼ N

(
si ,

σ2
s

mi

)
,

where si =
1

mi

∑
j∼i sj is the mean of the neighbors of area i and

mi is the number of such neighbors.
• σ2

s is a smoothing parameter: large values indicate large spatial
variability.

• This form is known as an intrinsic conditional autoregression
(ICAR) and is the spatial extension of the RW1 model.
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Example of a Neighborhood Scheme
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Figure 14: Common boundary neighbor
scheme for Bangladesh divisions.

ICAR prior for spatial random
effects s is,

p(s|σ2
s ) ∝ exp

(
−1

2
sTQs

)
.

Precision matrix, Q = R/σ2
s ,

R:
3 −1 −1 −1 0 0
−1 3 −1 0 0 −1
−1 −1 5 −1 −1 −1
−1 0 −1 3 −1 0

0 0 −1 −1 2 0
0 −1 −1 0 0 2


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Continuous Spatial Models

• Continuous spatial models are routinely used by both WorldPop
(Utazi et al., 2018) and the Institution for Health Metrics and
Evaluation (IHME) (Golding et al., 2017), two large producers of
maps of health and demographic indicators.

• Here, we focus on discrete spatial models.
• Continuous modeling is theoretically appealing:

• It avoids the arbitrariness of the discrete spatial model, in which
one needs to specify a neighborhood scheme.

• It allows data with different geographical information to be
combined.

• However, continuous modeling requires greater statistical and
computational expertise, and so is more hazardous in practice.

• Also, for area-level summaries, one needs to aggregate the
continuously varying prevalence surface with respect to a
population density surface d(s),

∫
Ai

p(s)d(s) ds, which can be
sensitive to the choice of d(s).

For more discussion and a comparison of discrete and spatial
models, see Wakefield et al. (2019).
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Comparison of Spatial Models

Figure 15: Kenya county level 2014 secondary education predictive estimates
(top) and 80% uncertainty interval width (bottom) for women aged 20–29.
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Spatial Smoothing of Simulated Data

Data Model: For area i :

Yi︸︷︷︸
Count

| pi︸︷︷︸
Prevalance

∼ Binomial(ni ,pi)︸ ︷︷ ︸
Data Model

.

Smoothing Model: For the odds in area i :

pi

1− pi
= exp(α+ Si + ei),

where:
• ei ∼iid N(0, σ2

e) represent independent “shocks” with no spatial
structure in area i .

• [S1, . . . ,Sn] are ICAR(σ2
S).

• The model is completed with priors on σ2
e and σ2

S – we won’t
discuss here, but see Simpson et al. (2017).
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Spatial Modeling of Simulated Data for n = 50
Constant Risk Case
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Figure 16: Results with n = 50 when true prevalence is 0.2. Left: Truth.
Middle: Raw proportions. Right: Smoothing with BYM.
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Spatial Modeling of Simulated Data for n = 100
Constant Risk Case
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Figure 17: Results with n = 100 when true prevalence is 0.2. Left: Truth.
Middle: Raw proportions. Right: Smoothing with BYM.
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Spatial Modeling of Simulated Data for n = 500
Constant Risk Case
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Figure 18: Results with n = 500 when true prevalence is 0.2. Left: Truth.
Middle: Raw proportions. Right: Smoothing with BYM.
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Spatial Modeling of Simulated Data for n = 50 Varying
Risk Case
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Figure 19: Results with n = 50 when true prevalence is varying. Left: Truth.
Middle: Raw proportions. Right: Smoothing with BYM.
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Spatial Modeling of Simulated Data for n = 100
Varying Risk Case
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Figure 20: Results with n = 100 when true prevalence is varying. Left: Truth.
Middle: Raw proportions. Right: Smoothing with BYM.
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Spatial Smoothing of Simulated Data for n = 500 Case
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Figure 21: Results with n = 500 when true prevalence is varying. Left: Truth.
Middle: Raw proportions. Right: smoothing with BYM.
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2013 Nigeria DHS
• In Nigeria, almost a third of the Admin2 areas have no data

(colored white in left plot below).
• We fit a discrete spatial model in which the rates in neighboring

areas (as defined by sharing a boundary) are “encouraged” to be
similar (right plot below).

Figure 22: Vaccination prevalences in Nigeria in 2013. Left: Weighted
estimates. Right: Estimates from BYM smoothing model.
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Spatio-Temporal Smoothing
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Main Effects and Interactions

• To motivate space-time models, when space is modeled
discretely, we consider simple two-way factor models.

• Suppose we have a univariate continuous response Y .
• Suppose we have two factors, A and B say, with i = 1, . . . , I and

j = 1, . . . , J indexing the levels.
• A main effects only model takes the form

E[Yij |α, ηi , φj ] = α+ ηi + φj .

• Interpretation: ηi is the effect of being at level i for factor A,
regardless of the level assumed by B, and φj is the effect of being
at level j for factor B, regardless of the level assumed by A,
i.e. there is no interaction.
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Main Effects and Interactions

• An interaction model adds a set of interaction parameters

E[Yij |α, ηi , φj , δij ] = α+ ηi + φj + δij .

• Interpretation: δij is the additional effect, beyond ηi + φj of being
simultaneously at levels i and j of factors A and B.

• If the factor correspond to nominal levels (e.g., a factor for color
with 2 levels: ”red”, ”blue”) then we would not expect similarity
between adjacent levels.

• In a space-time context the “factors” space and time have an
“ordering” and we might expect similarity.
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Main Effects Model

• First, consider the space-time model,

Yit |pit ∼ Binomial(nit ,pit)

pit = expit(α+ ei + Si + ωt + φt)

• Components:
• Unstructured spatial term ei ∼iid N(0, σ2

e), i = 1, . . . , n.
• Smooth spatial term [S1, . . . ,Sn] smooth in space, e.g., from an

ICAR model.
• Unstructured temporal term ωt ∼iid N(0, σ2

ω), t = 1, . . . ,T .
• Smooth temporal term [φ1, . . . , φT ] smooth in time, e.g. follows an

RW1 or RW2 model.

• Notice there is no interaction between space and time.
• The spatial effects are constant across time and temporal trends

are constant across space.
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Space-Time Interaction Models

• Knorr-Held (2000) considered the model:

pit = expit(α+ ei + Si + ωt + φt + δit),

with ei , Si , ωt , φt are as in the main effects only model.
• Four different models for the interaction δit :

• Type I: Independent interaction.
• Type II: Temporal trends differ between areas but don’t have spatial

structure.
• Type III: Spatial patterns differ between time points but don’t have

temporal structure.
• Type IV: Temporal trends differ between areas but more likely to be

similar for adjacent areas.

We describe the Type IV model only, since it is the most appealing in
a prevalence mapping context.
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Inseparable Space-Time Interaction Models

• Type IV: Temporal trends differ between areas but more likely to
be similar for neighboring areas.

• This will often be the most realistic model if interactions are
present.

• In the case of a RW2 temporal model and an ICAR spatial
model, the joint distribution can be written:

p(δ|σ2
δ) ∝ exp

− 1
2σ2

δ

T∑
t=3

∑
i∼j

(δit − δjt − 2δi,t−1 + 2δj,t−1 + δi,t−2 − δj,t−2)
2


• R-INLA implements this model.
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Figure 23: Weighted estimates and smoothed fits over time for 8 provinces of
Kenya.
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Figure 24: Maps of smoothed estimates over time for 8 provinces of Kenya.
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Figure 25: Space-time interactions δit for 8 provinces of Kenya.

59 / 63



Discussion
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Discussion

• Lots of applications have used discrete spatial models – they are
well understood and relatively easy to use.

• Computation for discrete spatial models is fast.
• Continuous spatial models pose greater modeling and

computational challenges.
• These difficulties mean that continuous spatial models are

harder to “package up”.
• In the next lecture we see how the spatial and space-time

models we have considered here can be used with data
collected from complex surveys.
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Books

Bayes:

• Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A. and
Rubin, D.B., Bayesian Data Analysis, Chapman and Hall/CRC Press.

• Hoff, P.D. (2009), A First Course in Bayesian Statistical Methods,
Springer.

• Wakefield, J. (2013). Bayes and Frequentist Regression Methods,
Springer.

Spatial:

• Banerjee, S., Gelfand, A.E. and Carlin, B.P. (2014). Hierarchical
Modeling and Analysis for Spatial Data, Second Edition, Chapman and
Hall/CRC Press.

• Bivand, R.S., Pebesma, E.J. and Gómez-Rubio, V. (2013). Applied
Spatial Data Analysis with R, Second Edition, Springer.

• Waller, L.A. and Gotway, C.A. (2004). Applied Spatial Statistics for
Public Health Data, Wiley.
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