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o We are interested in examining subnational variation in health
and demographic indicators across some study region.

e This can be achieved by prevalence mapping, which can produce
continuous prevalence surfaces, or area-level maps.

o We take as aim, obtaining area-level estimates in order to target
resources and examine progress towards goals, which is
explicitly the objective of small area estimation (SAE).

¢ In the terminology of survey sampling, SAE is an example of
domain (sub-population) estimation.

o “Small” refers to the fact that we will typically base our inference
on a small sample from each area, so it is not a description of
geographical size, in the limit there may some areas in which
there are no data.



Small Area Estimation

e Consider a study region partitioned into n disjoint and exhaustive
areas, indexed by i, i=1,... n.

e As a concrete example, suppose we are interested in a particular
condition so that the response is a binary outcome, Yi, for
k=1,..., N, individuals in area i.

¢ Based on samples that are collected in the areas (though some

areas may contain no samples), common targets of estimation
are:

e The population totals:
NI
T = Z Y.
k=1

¢ The prevalence of the condition in each area:

1

N:
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Background Reading on SAE

e The classic text on SAE is Rao and Molina (2015); not the
easiest book to read, and little material on spatial smoothing
models.

e An excellent review of SAE is Pfeffermann (2013), though again
little on spatial modeling.

e The SAE literature distinguishes between direct estimation, in
which data from the area only is used to provide the estimate in
an area, and indirect estimation, in which data from other areas
are used to provide the estimate.



Overview of Modeling

o We first briefly review more traditional SAE techniques.

e We then describe two approaches to spatial and space-time
modeling of survey data:

e A smoothed direct method, that treats the direct (weighted)
estimates as data, and then fits a spatial smoothing model.

e A cluster-specific model with a (say) overdispersed sampling model
at the cluster level, and a smoothing model being applied to the
prevalence — both discrete and continuous spatial models will be
discussed.

e We also describe the discrete hazards model that is used for
producing subnational estimates of of the under-5 mortality risk
(USMR).



Traditional Methods for SAE
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Design-Based Inference Based on Weighted

Estimators

e Suppose we undertake a complex design and obtain outcomes
yik inarea i, k € S;, where S; is the set of samples that were in
area .

o Along with the outcome, there is an associated design weight wi.

e Under the design-based approach to inference, it is common to
use the weighted estimator of the prevalence:

= Dkes Wik
Pi=<————-
ZKGS,‘ W’k

e Avariance, V, appropriate for the design, may be calculated,
either analytically, or through resampling techniques such as the
jackknife.

o Asymptotically (that is, in large samples):

pi ~ N(pi, Vi).



Direct Estimation

e The simplest approach is
to simply map the direct Years: 10-14

estimates p;. o5

e To assess the
uncertainty, one may map
the width of (say) the
95% confidence interval:

ﬁ,imgexﬁ.

0.10

0.05

e |f the samples in each 0.00
area are large, so that V,
is of acceptable size, then Figure 1: Direct estimates of USMR in
this approach works well. Ecuador, for 2010-2014. Denser hatching
¢ We would like to carry out indicates greater uncertainty.
some form of smoothing,
but in the case of e Many approaches have been suggested
complex survey sampling, to obtain estimators with greater
how should we proceed? precision — we discuss three, to give a

flavor.
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Synthetic Estimator

¢ The synthetic estimator is,

. 1N
SYN __ T
Y= N E Xy B,

" k=1

fori=1,...,n, where

i=1 keS; i=1 keS;

-1
n n
B= [Z Z W/kX/T'kXik] Z Z Wik X Yik-

¢ Note: Covariates needed for all of population.

¢ It is assumed that the regression model is appropriate for all
areas.

¢ An example of an indirect estimator, since information is used
from all areas.

¢ In general gives high precision estimates when n is large, since
variance is O(1/n), but there is the possibility of large bias.
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Survey-Regression Estimates

¢ |n order to deal with the potential large bias, this bias is
estimated and then the estimate is adjusted.

e The resultant survey-regression estimator is,

N.
. 1Ny ~
VPt = = XEB+ > wik(yk — XiB)
Ni= N,

~ ~HT
- ¥+ x-X)B

where \A/,HT and %;‘T are the Horvitz-Thompson estimates of the
population mean in area i, Yy and X;.

e Variance is unfortunately O(1/n;), so that large variances will
result, when there are small samples in areas.

o This survey-regression estimator is reliable in areas with large n;.
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Composite Estimator

e The composite estimator is of the form

~COM

Yi =6Vt (1-a)Yem

with 0 < ¢; < 1 estimated in such a way that for larger n; we have
larger ¢; — this estimator attempts to balance the bias of the
synthetic estimator with the instability of the direct estimator.

e Various possibilities exist for estimation of ¢;, in a design-based
framework, see Rao and Molina (2015).

¢ Rather than proceed along this route, we instead consider
model-based spatial SAE approaches.
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Smoothed Direct Modeling
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Smoothed Direct Estimation

e Fay and Herriot (1979) suggested the following hierarchical
model, in a landmark paper.
e Let p; be the weighted estimator of a prevalence p;, then consider

0; = logit (p;) = log (1 piﬁ_) ,
- 1

which is on the whole of the real line.
e The “data” is taken to be 6; and the sampling model is taken as
the asymptotic distribution of the direct estimator:

é\I' ~ N(9i7 /‘71)7
where V, the variance of the estimator, is known.
e The prior random effects model is
0 =a+ x;B+ e,
where x; are area-level covariates and the random effects
€ ~iid N(O, O'g).
e The model acknowledges the design and also smooths to a
global level — it is straightforward to add spatial random effects.
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Smoothed Direct Estimation

e The “data’ is taken to be §; and the sampling model is taken as
é\I' ~ N(eiv /\71)7

where V, is the known variance.
e The prior random effects model is

9i=a+X7ﬂ+9i+S,',

with
® g~ N(O,Ug).
o [Si,...,S] ~ ICAR(Ug).

e Known as an area-level SAE model.

e Mercer et al. (2015) and Li et al. (2019) considered a space-time
version of this model.

16/49



Smoothed Direct Estimation

e The area-level SAE model has been used by Gutreuter et al.
(2019) in the context of estimating HIV prevalence and burden in
districts of South Africa, using household survey data.

e Among the covariates considered for the prevalence model were:

prevalence estimates from antenatal clinics data,

population density,

percentages of housing units that were “formal dwellings”,
dependency ratio (ratio of the numbers of residents aged 15-64
years to those younger than 15 years and older than 64 years),
e socio-economic quintile,

e maternal mortality rate.

¢ A conditional autoregressive (CAR) spatial model (Marhuenda
et al., 2013) was used.
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Figure 2: Direct and Fay-Herriot estimates of HIV prevalence in South African
districts in 2012, from Gutreuter et al. (2019).
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Figure 3: Estimates of HIV prevalence and people living with HIV in South
African districts in 2012, from Gutreuter et al. (2019).
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Discrete Spatio-Temporal Model

¢ We now move to the space-time setting.

e Let p; be the design-based estimate of a prevalence in area i
and period t.

* Take logit of direct estimates pit, with appropriate design-based
estimator of the variance Vj, and model as in Mercer et al.

(2015):
logit(pir) ~ N( i, Vir)
br = a+ on + w + e + S5 + b
~— ~— ~— ~—~ ~—~
Temporal Smooth Temporal Noise Spatial Noise Spatial Smooth Interaction

o Alleviates small sample size problems via temporal, spatial and
space-time smoothing.

¢ Interaction terms are as described by Knorr-Held (2000) and
discussed in the Bayes/spatial smoothing lecture.
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Space-Time Modeling of USMR using a

Discrete Hazards Model
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e Aim of this work: In many developing world countries, vital
registration is not carried out, so that births and deaths go
unreported.

¢ We aim to provide reliable USMR estimates at the subnational
level, to aid with policy interventions and to assess progress
towards health targets. We use data from Demographic Health
Surveys (DHS).

o DHS Program: Typically stratified cluster sampling to collect
information on population, health, HIV and nutrition; more than
300 surveys carried out in over 90 countries, beginning in 1984.

e The Problem: Data become sparse as we proceed to finer spatial
levels.

e The Approach: Leverage space-time similarity to construct a
Bayesian smoothing model.
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Demographic Health Surveys

e The DHS use stratified (urban/rural, region), two-stage cluster
sampling (enumeration areas, and then households).

o All women age 15 to 49 who slept in the household the night
before were interviewed in each selected household and
response rates are generally high; these women asked to give
what is known as full birth history:

e Birth dates of all children.
¢ Death dates for children who died.

o DHS provides sampling (design) weights, assigned to each
individual in the dataset, along with (jittered) GPS coordinates of
the clusters.
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Discrete Survival Model

o We know that infant mortality varies greatly over the first 5 years
of life and two possible approaches to modeling how mortality
varies with age are:

¢ A continuous function of age, via a parametric model (e.g., Weibull,
gamma).

¢ A discrete function of age, which involves splitting age into
intervals.

o For flexibility, we follow the latter route and assume a discrete
survival model, with six discrete hazards (probabilities of dying in
a particular interval, given survival to the start of the interval) for
each of the age bands: [0, 1), [1,12), [12,24), [24, 36), [36,48),
[48,60]

o The first category corresponds to neonatal mortality.
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Discrete Hazards Model

¢ We assume a discrete hazard
model, with six hazards for
each of the age bands: [0,1), e
[1,12), [12,24), [24,36),
[36,48), [48,60].

¢ In demography speak, ,qgx is
the risk of death between
months x and x + n, given oty
survivaluntilx. | 7T

e For area i and period t, i)
survival for five years is:

Discrete Hazard
0.006 0.008 0.010
I I

0.004
I

0.002
I

0.000

59 0 10 20 30 40 50 60

16000 = H(1 - 19" e

x=0
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Discrete Hazards Model

The estimand of interest in area i and time period t is:

USMR" = 60 CIO”
59

= 1-1[0-1a

x=0

1 1 1M 1 12
- 1‘{1+exp( 4‘*)]X{1+exp( 3)] X"'X[Hexp(ﬁg)}

1+11+12+412+12+12 = 60 terms

¢ Design-based inference: To acknowledge the complex designs
weighted logistic regression model (Binder, 1983) is used to
estimate the 5’s, with a standard error based on the design.

e Model-based inference: Product of Bernoulli’s for each child,
with logistic regression model including stratification fixed effects
and random effects.

26/49



Smoothed Direct Estimation

The smoothed direct model is implemented in the R package SUMMER
(Martin et al., 2018):

¢ A design object is created in the survey package, and direct
estimates formed.

e The space-time model is fit using INLA.

¢ |t is computationally inexpensive, producing country-specific
estimates (for generic indicators or for USMR) in seconds.
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Years: 85-89 Years: 90-94 Years: 95-99 Years: 00-04

Years: 05-09 Years: 10-14

0.008 - 0.038 0.16 - 0.19
0.038 - 0.068 0.19 - 0.22
0.068 - 0.099 0.22-0.25
0.099 - 0.13 0.25-0.28 0.05
0.13-0.16 0.28 - 0.31

INENENENED]

0.00

Figure 4: Five-year period weighted estimates (from discrete survival model)
of USMR in Ecuador, with uncertainty indicated by density of hatching; more
hatching — more uncertainty, with the latter measured through width of 95%
uncertainty interval.
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Years: 85-89 Years: 90-94 Years: 95-99 Years: 00-04

0.008 - 0.038 0.16 - 0.19
0.038 - 0.068 0.19 - 0.22
0.068 - 0.099 0.22-0.25
0.099 - 0.13 0.25-0.28 0.05
0.13-0.16 0.28 - 0.31

INENENENED]
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Figure 5: Smoothed estimates (from a discrete survival model) of USMR in
Ecuador, with uncertainty indicated by density of hatching; more hatching —
more uncertainty, with the latter measured though width of 95% uncertainty

interval.
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Subnational period model project
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Figure 6: Five-yearly smoothed estimates (from a discrete survival model) of
US5MR in Ecuador, by province, with 95% uncertainty intervals.
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Smoothed Direct Model at Scale (Li et al., 2019)

e The smoothed direct model has been used for 35 African
countries to estimate USMR in Admin-1 regions, by year.

o Data enter at the 5-year level (to give stable variances), but the
RWs are defined on the 1-year scale.
e Data:
e 121 DHS in 35 countries

e 1.2 million children
e 192 million child-months

e Takes around 2.5 hours to obtain estimates for all countries —
separate models for each country.

e The smoothed direct model is very reliable for examining Admin1
subnational variation, but the direct estimates are often
unreliable for Admin2 estimation.

e Hence, we shortly describe a cluster-level model for this
endeavor.
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Figure 7: Predictions of USMR for 2015, in 35 countries of Africa.



Figure 8: Percent reduction from 1990 to 2015, in 35 countries of Africa.
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Cluster-Level Modeling
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o |nitially we describe the model
in space only.

e Suppose m; clusters are
sampled within area /,
i=1,...,nof astudy area.

o Let s; represent the
geographical location of
cluster cwithc=1,...,mso
that m =", m; is the total
number of clusters.

¢ As a concrete example let us
take neonatal deaths as the
outcome so that the number
of deaths and the number of
births are denoted Y(s.) and Figure 10: Cluster locations in three
n(sc), respectively. Kenya DHS, with county boundaries.

36/49



Beta-Binomial Cluster-Level Model

e |t is common to see overdispersion with spatial health and
demographic data.

¢ One approach to modeling this phenomenon is to assume the
cluster-level prevalence g. = q(s;) that is producing the survey
data we see in cluster c, is drawn from a probability distribution.

¢ If we were to go back in time and draw another random sample,
a different g, would result.

e The common g, to all units sampled, induces correlation
between the responses.

e Overdispersion can be modeled using a random effects
distribution for the prevalence.

e A common approach is to add a cluster-level normal random
effect, see for example Diggle and Giorgi (2019).
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Beta-Binomial Cluster-Level Model

e Here, we suppose the cluster level variability is described by the
random effects distribution:

gclac, b; ~ Beta(ag, be),

with a; = dpc, be = d(1 — p¢) so that d = a; + b, and

a
Pec =E[q] = Hc
1_
var(qe) = 7p°(d+ 1'00).

e The overdispersion is described by the scale parameter d.

e The intraclass correlation coefficient is the correlation between
two binary outcomes in the same cluster and corresponds to
1/(d+1).

e The parameters a. and b. are not the most intuitive, and it is
useful to instead think about the two free parameters as being
the mean p. and the scale d.
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Beta-Binomial Cluster-Level Model

¢ The sampling model corresponds to

Y:lgc ~ Binomial(ne, qc)
Qclac,b. ~ Beta(ac, be)

which can be integrated over q. to give the marginal distribution:

Pr(Yelpe, d) = / Pr(Ye|ne, c) x p(Qclpe, d) dqc,

Binomial(ng, qc) Beta(ac, bc)

with p; = ac/(ac + be) and d = 1/(ac + be).
¢ Turning the handle,

Ye|pe, d ~ Beta-Binomial(ng, pe, d),
with
E[Yelpe,d] = nepe

ne+d
1+d’

var(Yelpe,d) = nepe(1 — pc) x

so we have overdispersion for d > 0.
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Beta-Binomial Cluster-Level Model

o We still need to specify a form for the mean, and a logistic model
is natural.

o Under the discrete spatial model,
Pc = P(Sc) = expit(a + zcy + €5, + Sits.])

where the notation i[s¢] here should be read as “the area i/ which
contains the cluster at location s.”.
o The constituent terms are:
e p(sc) is the prevalence at location s,
e Zz: is the strata within which cluster c lies (with z. = 0/1 for
urban/rural),
e exp(~) is the associated odds ratio,

e ¢;is an IID area-level error term and S; is a spatial ICAR random
effect.

¢ Note that this model is the binomial version of the two-fold nested
error regression model, as discussed in Section 4.5.2 of Rao and
Molina (2015).
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Aggregation

o With this simple spatial form, the modeled area prevalence is

pi = r; x expit(a + S; + €) +(1 — ;) x expit(e + v + S + &),

Prevalence for Urban Prevalence for Rural

where
e 1; is the proportion of the area that is urban, and
e 1 — r; the proportion that is rural.

e The original sampling frame that contains the proportions of
urban/rural, is unavailable, though some information is typically
available in the DHS reports.

e The proportions r; can be obtained by thresholding population
density surfaces.
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Stochastic Partial Differential Equations (SPDESs)

e We briefly describe a cluster-level model with a continuous
spatial field.

e The sampling model is Y¢|p; ~ Binomial(n¢, pc), with

pe = p(sc) = expit(a + zey + S(8¢) + €c),

where

p(sc) is the prevalence at location s,

Z: is the strata within which cluster c lies (with z. = 0/1 for
urban/rural),

exp(~) is the associated odds ratio,

ec ~ N(0, 0?) is the so called nugget which represents short scale
variation and/or “measurement error”

5(s) is a spatial Gaussian process (GP) random effect —in the
results that follow we implement using the SPDE approach
(Lindgren et al., 2011).

e Aggregation requires the population density p(s):

P = /A Pls)d(s) ds
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SPDE Approximation

(a) A continuous function, (b) A piecewise linear approximation,

Fig. 2. Piecewise linear approximation of a function over a triangulated mesh,

Figure 11: GMRF representation of a Markovian GRF, via triangulation, from
Simpson et al. (2012)
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Application to Vaccination Prevalence in Nigeria

o We examine cluster-level spatial smoothing models in the context
of estimating measles vaccination rates in Nigeria in 2013, using
the 2013 Nigerian DHS.

¢ In Nigeria, the Admin2 areas correspond to Local Government
Areas (LGAs) and there are 774 in total — with such a large
number there are many LGAs with little/no data.

e There are no clusters in 255 LGAs (shown in white below).
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Recommended Methods for Routine Work

Sufficient Data
at Desired
Admin Level?

Reliable
Variance

Estimates?
Direct
Estimation

Smoothed
Direct
Estimation

Cluster-
Level
Model
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Discussion
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Discussion

e The smoothed direct model builds on the strengths of direct
(weighted) estimates and spatial smoothing models.

¢ In the limit, as we obtain larger data in an area, the weighted
estimates will dominate, which is exactly what we want!

o If insufficient samples in areas, then estimated variance is
unacceptably large (or undefined), and then we need to resort to
the cluster-level models:

¢ Discrete spatial models are easier to fit, and aggregation more
straightforward.

e Continuous spatial models are more challenging to fit, and
aggregation more challenging.

e Model checking techniques are still in their infancy in the SAE
context.

e Prevalence mapping is still in its infancy, and currently no agreed
upon “best” approach.
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