Arsenic Toxicity and Adverse Pregnancy Outcomes: An Insight from West Bengal, India

Mohua Guha and Kamla Gupta

Background and importance of the study
Groundwater is a significant source of drinking water in many parts of the world. Well-protected groundwater is safer in terms of microbial quality than water from open dug wells and ponds. It is, however, prone to chemical contamination from natural sources or by anthropogenic activities. The World Health Organization (WHO) recognizes arsenic (As) as the most serious inorganic contaminant with toxic properties found in groundwater on a worldwide basis (WHO 1981). While earlier maximum allowable concentrations recommended by WHO for arsenic in drinking water were higher, in 1993 the provisional WHO guideline value was reduced to ≤0.01 milligram/Litre (mg/L) based on concerns regarding its carcinogenicity in humans (WHO 2004). However, a number of countries (including India) still operate at ≤0.05 mg/L standard, which corresponds to the WHO guideline value before 1993. In September 2003, though the Bureau of Indian Standards (BIS) recommended, a reduction in drinking water arsenic to no greater than 0.01 mg/L, consistent with the WHO standard and that of most developed countries, yet this has not yet been implemented partially due to economic considerations and the lack of epidemiological evidence of human data at low concentration.

Development of skin lesions is the most widely reported and recognized symptom of arsenic exposure. However, chronic exposure may affect all the organs and systems of the human body including the respiratory, gastro-intestinal, cardiovascular, nervous and reproductive systems, the effects being both local and systemic (Abernathy et al. 1997). There is extensive documentation of reproductive and fetal developmental effects in a variety of animal species (Hood et al. 1988, Gerver et al. 1982, Zierler et al. 1988) with only a handful examining the same in case of human pregnancy outcomes (Aschengrau et al. 1989, Borzsonyi et al. 1992). The recent studies observed that arsenic readily crosses the human placental barrier, giving rise to arsenic concentrations that are about as high in cord blood as in maternal blood and thus affects fetal development (Concha et al. 1998). However, the anecdotal obstetric histories, which suggest reproductive toxicity at exposures sufficient to cause maternal toxicity, are highly debatable due to limited human data. Ecologic

Objective

With this background, the present paper tries to examine the risks of spontaneous abortions, stillbirths, and preterm births among women of the exposed group (consuming various concentrations of arsenic in their drinking water) compared to the non-exposed group. It further tries to assess the effect of socio-economic and health factors on such risks.

Data and methods

The study area was Murshidabad district in West Bengal, where a cross-sectional case-control study was conducted during 2006. Among the total 26 blocks of the district, 19 are arsenic affected according to the data of the Public Health and Engineering Department (PHED 2004). Since the level of arsenic contamination varies greatly within a district, all these 19 blocks were ranked according to their mean level of arsenic concentration after which they were divided into four quartiles. From each quartile one block was selected randomly. From the four selected blocks, eight villages, two from each block were chosen as case villages for the present study. In each block the villages were ranked according to the mean arsenic concentration provided by the PHED to the villages by arsenic concentration level in the tubewells. Two villages were chosen randomly, one from above the 50
percentile value and one below it. From the remaining seven blocks which are not affected by arsenic (here treated as control villages), two blocks were chosen purposively from which four villages, two from each block were again selected purposively. In all, 12 villages were selected for this study, eight from case and four from control villages respectively. The target population of this study was individual households within selected villages. Prior to the selection of the respondents, PHED tested tubewells were first identified according to given landmarks and then five tubewells were randomly selected from each of the villages. The reason behind choosing five tubewells was purely based on the logic that we wanted to restrict the sample size to about 360 households (for coverage purpose) and most importantly in the study district, approximately 35 persons (about six households) depend on a single tubewell for water. In all, the sample size consisted of 360 households, 240 and 120 for case and control villages respectively.

Subject eligibility

After identification of the households using the selected tubewells, all women living in these households were identified and their eligibility status was determined. Eligible participants included ever-married women of reproductive age 15-49 years at the time of survey and who previously had at least one pregnancy. The exposed group consisted of women who had been drinking arsenic-contaminated water \((\geq 0.05 \text{ mg/L})\) for at least five years, whereas the non-exposed group consisted of respondents who had been drinking arsenic-safe water \((\leq 0.01 \text{ mg/L})\). The subjects in the non-exposed group were matched for age, standard of living (SLI), education, and age at marriage. A total of 351 eligible women were interviewed – 242 in case villages and 109 in control villages. More than 30 women declined to participate due to religious reasons and the conservative nature of the local culture.

Data collection

A semi-structured interview schedule was used to collect quantitative information from the respondents. There were two broad sections in the interview schedule: first, a household section which was designed to capture the socio-economic and demographic characteristics along with sources and use of water facilities for different purposes. The second section tried to capture the individual characteristics of women in their reproductive ages (15-49 years) including a detailed overview of their pregnancy history, including adverse pregnancy outcomes (i.e., spontaneous abortion, stillbirth and preterm birth), antenatal care, and on several confounding factors, including lifestyle and personal habits. The operational definition of stillbirth was considered to be any delivery
after 28 completed weeks of gestation in which the baby did not breathe or show any sign of life. A preterm birth was considered to be any live birth before completion of 8 months, or 37 weeks from the last menstrual cycle. A natural failure of pregnancy within the first 28 weeks of gestation was regarded as spontaneous abortion. During analysis we calculated stillbirth, spontaneous abortion and preterm birth rates using the total number of live births as the denominator. Subsequently, the pregnancy outcome events have been compared in the exposed and non-exposed groups.

Summary of findings

The mean age of the respondents in both exposed and non-exposed groups was 31 years. Of the respondents in both the groups, 57 percent of the women were married before 18 years of age, whereas, the same for case and control villages were 59 and 54 percent respectively. Among the total respondents, 68 percent had no formal education, and only three percent studied more than fifth standard. Overall, about 64 percent of the respondents reported parity between three and five. In the case villages, about 23 percent of the respondents were consuming tubewell water having arsenic concentration level of more than 0.33 mg/L which is about 33 times the prescribed permissible limit of arsenic in drinking water by WHO. In the exposed group, 14 percent had skin lesions due to arsenic toxicity while no such skin lesions were found in the control villages. It may be noted that the respondents in both case and control villages had fairly matching characteristics apart from level of arsenic concentration in drinking water. The mean number of pregnancies, live births, stillbirths, spontaneous abortions and preterm births were 3.59, 3.12, 0.21, 0.26, and 0.26, respectively among the exposed group and 3.62, 3.41, 0.08, 0.12, and 0.13, respectively, in the non-exposed group. In the exposed and non-exposed groups, respectively, 87 percent and 94 percent of the pregnancies ended as live births; the difference was statistically significant ($z = 3.2; p = 0.002$). Adverse pregnancy outcomes measured as spontaneous abortion, stillbirth and preterm birth rates were 73.4, 62.3, and 81.8 per 1000 live births, respectively, among the exposed group and 34.0, 24.0, and 37.2 per 1000 pregnancies, respectively, among the non-exposed group. The results showed a statistically significant difference in the adverse pregnancy outcomes rates ($p < 0.05$) when compared between these two groups. We also assessed the risk of adverse pregnancy outcomes at several concentrations of arsenic in drinking water within case villages. Risks were generally higher for all three pregnancy outcomes with higher concentration of arsenic and a exposure history of more than 15 years.