Gender inequality and fertility transition in Middle East: the case of Syria

The influence of the gender system on the fertility transition has been demonstrated by many studies especially during the last three decades (Mason 1987, 2001, Sathar et al. 2001, Abbasi-Shvazi et al. 2009), Since the International Conference on Population and Development held in Cairo in 1994 which stipulated that gender equality is a prerequisite for the achievement of fertility decline, gender issues became the subject of a public discussion particularly in developing countries where equity between the sexes is almost non-existent. This study aims to analyze the relationship between gender inequality and fertility transition in one of the Middle Eastern Arab countries: Syria.

The first objective of this work is to describe levels, trends and patterns of fertility transition in Syria at the national level and at the regional level. The second objective is to analyze the gender system and clarify the actual status of women in this country. The third objective is to explore the relationship between gender inequality and fertility transition.

At the national level, the analysis of the fertility transition in Syria allows us to distinguish several phases. The first phase was when fertility reached world records, and resisted any change. Followed by the phase of rapid decline in the mid-1980s, and lastly by a phase of slow decrease or a phase of quasi-stagnation in fertility around 3.5 children per woman. At the provincial level, generally the trends in fertility across provinces are very similar to those at the national level during the last three decades. All provinces started their fertility transition at the same time, even those which are very distant from the capital and little advanced and despite their marked differences in fertility in the late 1970s (Youssef 2009, Courbage 2007). This regional difference is still remarkable, provinces located at the north-east of country and southern borders have very high fertility, while coastal provinces, the province of Al-Sweida, and the capital have the lowest fertility. In 2009, there was a very
big difference in fertility 4.8 children per woman between the province of Deir-ez zor with the highest recorded total fertility rate of 6.9 children per woman and the province of Al-Sweida with a total fertility rate of 2.1 children per woman. This regional variety in fertility rates appears to covary with women’s status and gender relations. In fact, the analysis of Syrian fertility shows a distinct regional pattern: the coastal and mountainous regions inhabited by the religious minorities: the Alawis, the Druzes, and the Ismailis have low fertility, while the interior of Syria or the Sunni regions (Arabs and Kurds) have high fertility. This variation is most pronounced with regard to kinship and family structure; the coastal and mountainous areas are characterized by a higher status of women and a greater tolerance for daughters inheriting than areas in the interior of Syria.

Our analysis of gender inequality and fertility is conducted at the aggregate level. We argue that variations in gender inequality across regions need to be considered in an analysis of regional variations in fertility in Syria. Thus, the underlying hypotheses in this study follow:

1- The higher gender inequality in a community, the higher the fertility level in that community and vice versa.
2- When controlling for other demographic and development variables, the regional pattern of fertility in Syria can be explained by differences in gender inequality.

The main source of data comes from the published results of the census of 2004. The data include cross-sectional measures of socioeconomic and demographic characteristics at the district level for all of Syria. Our analysis is conducted on the population of 270 districts.

A logistic regression analysis is used to examine the effect of gender inequality on fertility level. Total fertility rate is used to measure fertility level while aspects of gender inequality are measured by several variables: the sex ratio of mortality, the female share of literates, ratio of female primary school enrollment to male primary school enrollment, ratio of female preparatory school enrollment to male preparatory school enrollment, ratio of female high school enrollment to male high school enrollment, female share of the labor force, ratio of female unemployment rate to male unemployment rate, ratio of female head of households. As for socioeconomic development indicators, we incorporate four variables: Proportion of male labor force in non-agricultural sector, proportion of households with electricity, proportion of households with sanitation, and proportion of households with piped water.
References


