Falling Sex Ratios and Emerging Evidence of Sex Selective Abortion in Nepal

Melanie Frost¹, Mahesh Puri², Andrew Hinde¹

¹ Division of Social Statistics and Demography, University of Southampton
² Center for Research on Environment, Health and Population Activities (CREHPA), Nepal
Introduction

Selective abortion of females has been found to occur extensively in several Asian countries. Estimates suggest that between 3.1 and 6.0 million sex-selective abortions took place in India in the 2000s.\(^1\) China has a well-documented history of so-called “missing girls” resulting from a combination of the one child policy and son preference, with as few as 847-877 girls born for every 1,000 boys.\(^2\)\(^3\) Both China and India have well-established abortion services provided by national and regional governments; sex-selective abortion is illegal in both countries.\(^4\)\(^5\)

An interesting question is the extent to which state provision of abortion services is associated with the selective abortion of females. Assessing this using data from China and India is difficult as the provision of abortion services has increased gradually.\(^4\)\(^6\) However the neighbouring country of Nepal saw an abrupt change between 2002 and 2004 which provides the opportunity to measure the impact of state provision of abortion services on sex-selective behaviour. Abortion was legalised in Nepal in 2002 and Comprehensive Abortion Care (CAC) services were provided by the government from 2004 onwards.\(^7\) Sex determination is expressly prohibited and anyone found performing (or facilitating) an abortion on this basis can be punished with one year’s imprisonment, but otherwise the law is now liberal. Before 2002 unsafe abortion was the third largest cause of maternal mortality and it was not uncommon for women living in the south of the country to visit India if they wanted an abortion, though the scale of this is not known.\(^7\) Studies of post-abortion care at 10 major hospitals showed that between 20% and 60% of the women admitted as obstetric and gynaecological patients were abortion complication cases.\(^8\)

Nepal has revealed high levels of son preference since the World Fertility Surveys first documented the phenomenon in the 1980s.\(^9\) Daughters are often considered to be an economic burden because of the dowry system and the fact that a girl will join her husband’s family after marriage. Sons are highly prized because they continue the family name, are deemed crucial to perform funeral rites, are likely to bring in a daughter-in-law into the family and are expected to provide support for their parents in old age.\(^10\)\(^-\)\(^12\)

Before 2002, son preference in Nepal was mainly evidenced through differential stopping behaviour (i.e. the decision to have another child depended upon the sex composition of previous children). It has been estimated that such behaviour caused the fertility rate to be at least 6% higher and contraceptive use to be as much as 24% lower than it would otherwise have been.\(^9\)\(^10\) It therefore seems possible that, despite the strict prohibition of abortion on the grounds of the sex of the child, Nepalis will have taken advantage of the opportunities provided by the legalisation of abortion to influence the sex composition of their children.

Previous research suggests that sex-selective abortions occur in Nepal, but the evidence is either qualitative or based on small scale data.\(^13\) A study in Kathmandu recorded the sex and parity of all babies born in a single hospital during a five year period (2003-2007) and found that, while for first born children the sex ratio was relatively normal at 943 females per 1,000 males, the sex ratio for second order births was 874 and for higher order births it was 565.\(^14\) Unfortunately the sample sizes were too small to draw any significant conclusions. A rapid assessment of sex ratios at birth in 1991 and 2001 consistently found more male than female babies being born in a number of districts of Nepal bordering India.\(^15\) A study conducted in 2007 revealed that legal sanctions against pre-natal sex determination and sex-selective abortion had not stopped medical practitioners and sonographers in Nepal from providing such services.\(^16\)
Abnormal sex ratios can be the result of mechanisms other than sex-selective abortion: one example is through Hepatitis B, which can cause the sex ratio to be skewed towards males, though this is somewhat controversial; there are also other biological explanations, but none of these would operate differentially across birth orders. If sex ratios vary substantially across birth orders then the explanation for this is almost certainly the use of sex-selective abortion. In India, for example, recent research indicates that the sex ratio of first born children has not changed significantly since 1990, while the sex ratio of second born children where the first was female was as low as 786 in the year 2000 and has not been above 900 since 1992. Research from China has also found that sex ratios differ by parity – in 2004-05 the sex ratio of first born children was 925, while for second born children it was 699.

It should be noted that even when sex-selective abortion is occurring, changes in its prevalence can occur for reasons related to the demand for, rather than the supply of, abortion services. Where fertility is declining rapidly the preference for sons may be intensified since the overall desired number of children will fall faster than the desire for sons, and pressure on couples to balance the sex composition of their children may contribute to further demand for pre-natal sex selection at low parities. Nepal has seen one of the most dramatic fertility declines in history, with the total fertility rate (TFR) falling from 4.1 to 2.6 in just 10 years.

The aim of this paper, therefore, is to examine sex ratios of births before and after the introduction of Comprehensive Abortion Care in 2004 to assess whether, given the religious and socio-economic value given to sons, the legalisation of abortion, and the availability of pre-natal sex-determination technologies and abortion clinics, was associated with a change in the proportion of babies which were male.

Methods

Data
Over 40,000 women were interviewed in four rounds of the Nepal Demographic and Health Survey (NDHS), conducted in 1996, 2001, 2006 and 2011. All four surveys were nationally representative and used a two stage stratified sampling scheme. All women were asked about their fertility and full birth histories were obtained from the 31,842 women aged 15-49; these birth histories included information on over 111,000 births. Full details of the NDHSs can be found elsewhere.

A module on induced abortion was included in the 2011 NDHS for the first time. This included questions to ascertain the prevalence of abortion as well as the reasons for it. Overall 7.5% of pregnancies were reported to have ended in abortion in the five years before the survey was conducted. This varied substantially depending on the woman’s socioeconomic characteristics with 17.5% of pregnancies ending in abortion for women in the highest wealth quintile. Of 506 women who gave a reason for their abortion 3.16% reported that it was due to the child's sex, but the subject area tends to have a high incidence of misreporting so indirect methods are likely to be the best method of studying the phenomenon.

Statistical Analysis
In the absence of intervention, the sex ratio at birth in human populations is essentially a biological constant with relatively little variation. For every 1,000 males born, there will generally be between 950 and 975 females. This should not vary by birth order.
To control for the fact that demand for sex-selective abortions will vary by birth order and sex of previous children conditional sex ratios (CSRs) are used in our analysis, specifically the CSR for second-born children where the first born was female. This sex ratio is generally held to be where evidence of sex-selective abortion will be most visible, since the motivation for sex-selection will probably be at its highest; it has been used frequently to provide evidence for the widespread use of sex-selective abortion in India. If a woman is sufficiently motivated (or pressured) to have a son that she is prepared to have an abortion to achieve that end it is unlikely that she will wait until a much higher parity than two or three.

The sex ratios presented in this paper are the number of female births per 1,000 male births, calculated as $(P_f / P_m) \times 1000$, where P_f is the proportion of total births that are female and P_m is the proportion of total births that are male. The sex ratios are weighted to account for the sampling scheme used in the NDHS. We only included births reported to have happened within ten years of the survey date, since extremely long recall periods tend to be less accurate, and misreporting may differ by sex of the baby. For time periods where more than one survey was available a weighted average of the different surveys was used.

Wealth tertiles were produced using principal components analysis; this was done separately for urban and rural areas in order to be able to look at the relative contribution of women at different wealth levels in diverse environments. Tertiles were used, rather than the more traditional quintiles, due to sample size considerations.

All analyses were conducted in STATA (version 12.0).

Results

Sex ratios at birth were found to vary substantially by parity, the sex of previous offspring and the time period during which the births occurred. Table 1 shows the trends in different conditional sex ratios over the 18-years 1992-2010. Years were grouped as the sample sizes for single years were small. The overall sex ratio is never significantly different from the expected range of 950-975 and does not show significant change over time; the same is true of the sex ratio of first-born children. However, for second-born children where the first born was female, the sex ratio shows a substantial decline after the legalisation of abortion. In 2001-2003 it was 947, in 2004-2006 (when government abortion services became available in most district headquarters and urban and semi-urban areas) it dropped to 830 and by 2007-2010 it had fallen further to just 742, despite the overall sex ratio being 933. For third-born children where the first two children had both been female the sex ratio was also very low at 767, compared to 892 if the first two children had both been male or 935 if one was male and one was female. The sex ratio for second-born children in 2007-2010 was low even for mothers whose first born was male at 822. Of the 4,521 births recorded in the NDHS 2011 during 2007-2010, 1,247 were second order births and just 559 (44.8%) of these were female. Assuming the biologically expected sex ratio at birth we would have expected at least around 650 females to have been born given the number of males.

It should be noted that in 2007-2010 only 14% of all births in Nepal were second order after a first-born girl. This explains why the overall sex ratio at birth is not greatly affected even by substantial changes in the sex ratio for this subset of births.
The sex ratio for second-born children where the first was female is thought to be the strongest evidence for sex selective abortion available, short of direct data. If this particular CSR also varies by socioeconomic characteristics then this is even stronger evidence that sex-selective abortion is being used, since knowledge of, access to, and uptake of abortion will not be equal in all parts of society. Figure 1 shows how the CSR has varied over the four NDHSs by mother’s education. The sex ratios shown are those experienced during the five years prior to each survey. Table 2 shows the CSR and overall sex ratio before and after 2004 (when CAC services first became available), the percentage change in the CSR and the significance of the fall using a one sided t-test. A dramatic decline in the sex ratio is evident for those women who have at least a secondary leaving certificate or above. In the five years before the NDHS 2006 the CSR for this group of women was just 653 females for every 1,000 males, and the NDHS 2011 showed a CSR of just 368, while the CSR was almost 50% lower after 2004. The fall in the CSR after 2004 was significant at the 5% level for all educational groups except those with no education.

Table 1: Conditional sex ratios at birth (females per 1000 males), by birth order, 1992-2010

<table>
<thead>
<tr>
<th>Year</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992-1994</td>
<td>975</td>
<td>(945,1007)</td>
<td>14963</td>
<td>964</td>
<td>(892,1041)</td>
<td>3642</td>
<td>1063</td>
<td>(949,1191)</td>
<td>1580</td>
<td>951</td>
<td>(852,1061)</td>
<td>1685</td>
</tr>
<tr>
<td>1995-1997</td>
<td>952</td>
<td>(920,985)</td>
<td>13050</td>
<td>878</td>
<td>(807,954)</td>
<td>3295</td>
<td>856</td>
<td>(760,963)</td>
<td>1474</td>
<td>967</td>
<td>(858,1090)</td>
<td>1439</td>
</tr>
<tr>
<td>1998-2000</td>
<td>973</td>
<td>(938,1009)</td>
<td>11553</td>
<td>920</td>
<td>(850,995)</td>
<td>3136</td>
<td>902</td>
<td>(799,1018)</td>
<td>1386</td>
<td>1021</td>
<td>(906,1150)</td>
<td>1340</td>
</tr>
<tr>
<td>2001-2003</td>
<td>928</td>
<td>(887,971)</td>
<td>7586</td>
<td>907</td>
<td>(812,1011)</td>
<td>2187</td>
<td>818</td>
<td>(688,969)</td>
<td>966</td>
<td>947</td>
<td>(810,1106)</td>
<td>968</td>
</tr>
<tr>
<td>2004-2006</td>
<td>962</td>
<td>(915,1012)</td>
<td>6044</td>
<td>975</td>
<td>(872,1090)</td>
<td>1864</td>
<td>971</td>
<td>(816,1157)</td>
<td>812</td>
<td>830</td>
<td>(702,978)</td>
<td>788</td>
</tr>
<tr>
<td>2007-2010</td>
<td>933</td>
<td>(880,989)</td>
<td>4521</td>
<td>1010</td>
<td>(907,1124)</td>
<td>1489</td>
<td>822</td>
<td>(689,979)</td>
<td>633</td>
<td>742</td>
<td>(599,913)</td>
<td>614</td>
</tr>
</tbody>
</table>

Table 2: Conditional sex ratios at birth (females per 1000 males), by birth order, sex of previous children, 1992-2010

<table>
<thead>
<tr>
<th>Year</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
<th>mean</th>
<th>95% CI</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992-1994</td>
<td>811</td>
<td>(681,964)</td>
<td>662</td>
<td>1027</td>
<td>(864,1221)</td>
<td>719</td>
<td>984</td>
<td>(870,1113)</td>
<td>1327</td>
<td>963</td>
<td>(912,1016)</td>
<td>5348</td>
</tr>
<tr>
<td>1995-1997</td>
<td>922</td>
<td>(763,1112)</td>
<td>530</td>
<td>975</td>
<td>(814,1167)</td>
<td>640</td>
<td>1131</td>
<td>(995,1287)</td>
<td>1163</td>
<td>951</td>
<td>(897,1008)</td>
<td>4509</td>
</tr>
<tr>
<td>1998-2000</td>
<td>1005</td>
<td>(806,1254)</td>
<td>449</td>
<td>849</td>
<td>(699,1027)</td>
<td>553</td>
<td>954</td>
<td>(827,1099)</td>
<td>948</td>
<td>1011</td>
<td>(948,1078)</td>
<td>3741</td>
</tr>
<tr>
<td>2001-2003</td>
<td>933</td>
<td>(713,1218)</td>
<td>300</td>
<td>872</td>
<td>(689,1099)</td>
<td>392</td>
<td>888</td>
<td>(726,1084)</td>
<td>620</td>
<td>972</td>
<td>(893,1057)</td>
<td>2153</td>
</tr>
<tr>
<td>2004-2006</td>
<td>930</td>
<td>(650,1325)</td>
<td>198</td>
<td>846</td>
<td>(629,1130)</td>
<td>313</td>
<td>1041</td>
<td>(845,1282)</td>
<td>490</td>
<td>994</td>
<td>(900,1097)</td>
<td>1579</td>
</tr>
<tr>
<td>2007-2010</td>
<td>892</td>
<td>(637,1241)</td>
<td>169</td>
<td>767</td>
<td>(556,1046)</td>
<td>215</td>
<td>935</td>
<td>(707,1233)</td>
<td>372</td>
<td>1100</td>
<td>(973,1244)</td>
<td>1029</td>
</tr>
</tbody>
</table>
Figure 1 shows the conditional sex ratio of second order births where the first born was female, by educational level of the mother, over time.

Figure 2 shows the same CSR split by wealth tertile in urban and rural areas for the five year period before each NDHS. In the 2011 NDHS rural women in all wealth tertiles display lower sex ratios than would be expected, with the sex ratio in all wealth groups below 800. A wealth gradient is visible, with the richest women being least likely to have a girl, but it seems that even poorer women are finding ways of manipulating the sex composition of their children. For urban women in the 2011 NDHS the wealth gradient is dramatic, with the poorest urban women having a higher sex ratio than rural women, but the richest urban women exhibiting the lowest sex ratio of all at just 326, indicating where sex-selective abortion is likely to be most prevalent. That the CSR is lowest among richer urban women is unsurprising, as they would be expected to be able to access abortion services most easily and have the greatest knowledge about the availability of abortion services; that said, the extent of the shortfall in female births is remarkable. Table 2 shows that the fall in the sex ratio was significant for all wealth groups in rural areas, but only for the richest in urban areas. Nonetheless, the CSR post-2004 was substantially less than 900 for all wealth groups of urban women.
Table 2: Conditional sex ratios of second order births where the first born was female and overall sex ratios, before and after the introduction of CAC services

<table>
<thead>
<tr>
<th></th>
<th>1992-2003</th>
<th></th>
<th>2004-2010</th>
<th></th>
<th>% fall in CSR</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>CSR</td>
<td>Overall</td>
<td>CSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sex ratio</td>
<td>n</td>
<td>sex ratio</td>
<td>n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wealth of urban women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorest</td>
<td>949</td>
<td>3963</td>
<td>956</td>
<td>952</td>
<td>953</td>
<td>1014</td>
</tr>
<tr>
<td>Middle</td>
<td>952</td>
<td>2789</td>
<td>915</td>
<td>772</td>
<td>971</td>
<td>749</td>
</tr>
<tr>
<td>Richest</td>
<td>943</td>
<td>1263</td>
<td>1019</td>
<td>480</td>
<td>872</td>
<td>279</td>
</tr>
<tr>
<td>Wealth of rural women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poorest</td>
<td>990</td>
<td>13256</td>
<td>1074</td>
<td>2706</td>
<td>989</td>
<td>3642</td>
</tr>
<tr>
<td>Middle</td>
<td>954</td>
<td>15852</td>
<td>939</td>
<td>3657</td>
<td>912</td>
<td>2845</td>
</tr>
<tr>
<td>Richest</td>
<td>939</td>
<td>8811</td>
<td>916</td>
<td>2463</td>
<td>897</td>
<td>1476</td>
</tr>
<tr>
<td>Woman’s education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No education</td>
<td>956</td>
<td>34496</td>
<td>957</td>
<td>8758</td>
<td>988</td>
<td>5433</td>
</tr>
<tr>
<td>Primary or less</td>
<td>998</td>
<td>6539</td>
<td>1046</td>
<td>1517</td>
<td>937</td>
<td>2059</td>
</tr>
<tr>
<td>Some secondary</td>
<td>945</td>
<td>5416</td>
<td>958</td>
<td>1219</td>
<td>899</td>
<td>2598</td>
</tr>
<tr>
<td>SLC or above</td>
<td>991</td>
<td>699</td>
<td>1001</td>
<td>166</td>
<td>863</td>
<td>475</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Mountain</td>
<td>978</td>
<td>2194</td>
<td>789</td>
<td>477</td>
<td>930</td>
<td>635</td>
</tr>
<tr>
<td>Central Mountain</td>
<td>961</td>
<td>2330</td>
<td>1194</td>
<td>534</td>
<td>828</td>
<td>468</td>
</tr>
<tr>
<td>Western Mountain</td>
<td>897</td>
<td>2953</td>
<td>901</td>
<td>591</td>
<td>965</td>
<td>863</td>
</tr>
<tr>
<td>Eastern Hill</td>
<td>1024</td>
<td>3310</td>
<td>1023</td>
<td>793</td>
<td>1002</td>
<td>855</td>
</tr>
<tr>
<td>Central Hill</td>
<td>925</td>
<td>4056</td>
<td>964</td>
<td>1207</td>
<td>996</td>
<td>701</td>
</tr>
<tr>
<td>Western Hill</td>
<td>969</td>
<td>4152</td>
<td>997</td>
<td>1136</td>
<td>1004</td>
<td>809</td>
</tr>
<tr>
<td>Mid-Western Hill</td>
<td>928</td>
<td>3485</td>
<td>869</td>
<td>737</td>
<td>867</td>
<td>945</td>
</tr>
<tr>
<td>Far-Western Hill</td>
<td>979</td>
<td>3356</td>
<td>1105</td>
<td>712</td>
<td>929</td>
<td>872</td>
</tr>
<tr>
<td>Eastern Terai</td>
<td>991</td>
<td>4557</td>
<td>911</td>
<td>1298</td>
<td>969</td>
<td>882</td>
</tr>
<tr>
<td>Central Terai</td>
<td>969</td>
<td>5823</td>
<td>989</td>
<td>1412</td>
<td>980</td>
<td>1113</td>
</tr>
<tr>
<td>Western Terai</td>
<td>941</td>
<td>3983</td>
<td>1023</td>
<td>992</td>
<td>964</td>
<td>821</td>
</tr>
<tr>
<td>Mid-Western Terai</td>
<td>921</td>
<td>3370</td>
<td>1020</td>
<td>844</td>
<td>941</td>
<td>852</td>
</tr>
<tr>
<td>Far-Western Terai</td>
<td>1001</td>
<td>3583</td>
<td>956</td>
<td>928</td>
<td>923</td>
<td>749</td>
</tr>
</tbody>
</table>

NB: † p<0.1 * p<0.05 **p<0.01 ***p<0.001
There were regional differences in the CSR and how much it changed after the legalisation of abortion. Table 2 shows the conditional sex ratio for 13 sub-regions of Nepal for the 10 years before 2004 and the period post-2004. The regions are defined on the basis of altitude (‘mountain’, ‘hill’ and ‘Terai’ or plains), and longitude (‘far western’, ‘western’, ‘mid-western’, ‘central’ and ‘eastern’). The CSR declines between the two periods in every region but one (the Eastern Mountain, where the CSR before 2004 was below 800). Two regions show declines which are significant at the 5% level, and six regions (accounting for around two thirds of the population of Nepal) show declines that are significant at the 10% level. The most substantial decline was visible in the Central Terai where the CSR fell by almost 30% from 989 to 701, though both the Mid-Western Hill and the Eastern Terai had lower sex ratios after 2004. Before 2004 just one region had a CSR below 800 and 11 out of 13 had CSRs of over 900. In the period after abortion services became available the CSRs of 10 regions dropped below 900, with six falling below 800 and one below 700.

![Graph showing conditional sex ratio for urban and rural areas](image)

Figure 2: Conditional sex ratio of second order births where first born was female, by wealth tertile of the household in urban and rural areas, over time

Discussion

These findings suggest that since abortion was legalised in Nepal sex-selective abortion has become more common. We have found no evidence that the natural sex ratio of births (unaffected by human
intervention) is outside the normal range for human populations; in particular the sex ratio of first-born
does not differ significantly from the expected level of 950-975 females per 1,000 males. However, for
second-born children, especially where the first-born was female, there has been a sharp (and
significant) fall in the number of girls compared with boys. The sex ratio of third-born children where
the first two were female has also fallen substantially in recent years, while for children of higher
parities the sex ratio remains within the expected range; this may indicate a tendency for those women
having more than four children not to use contraception or abortion services. Sex ratios of births are
lowest for richer, more educated women, especially in urban areas and differ substantially by parity and
the sex composition of previous children.

The data we have used were collected over the course of 16 years and include over 40,000 Nepali
women, but are still not sufficient to allow the identification of all the sub-populations experiencing low
sex ratios. Regional estimates of sex ratios were limited to relatively large areas. Census data may yet
prove fruitful for achieving a finer level of aggregation. The 2001 census indicated that no district had
an abnormal population sex ratio for infants. It will be interesting to find out if almost ten years after
abortion was legalised, the infant sex ratios in any particular districts show a decline. The survey data
analysed here indicates that this may well be the case, but it should be remembered that the extremely
low CSRs are masked by a relatively normal overall sex ratio at birth.

Apart from the fact that the results reported in this paper are based on a relatively small number of
births, some underreporting of girls in full birth histories is a possibility. However, it seems improbable
that the underreporting would be greater than average for second order and third order births, or
among rich, urban, or better educated women in more recent surveys.

Although we have been able to suggest that sex-selective abortion has increased in Nepal since 2004,
we have not been able to enumerate the size of the problem. It is hoped that census data will allow the
number of sex-selective abortions in recent years to be estimated. However, the CSR we report for
second order births where the first born was female is just 742, which is as low as the same CSRs found
in India, where sex-selective abortion is known to be widespread. It seems likely that sex-selective
abortion is becoming a more common phenomenon in Nepal, a trend which mirrors that in India and
China. Recent evidence from DHS data suggests that the proportion of pregnancies aborted increases
with birth order and is higher for urban, richer and better-educated women. The timing and abruptness of
the change in CSRs suggests that it is associated with the legalisation of abortion and the state provision of
abortion services in the country. CAC services have only been available since 2004, but in some regions the
CSR of second-born children where the first born was male has fallen by well over 200 in that time. However, we do not mean to suggest a simple
relationship between the introduction of CAC services and the change in the CSRs. It is more likely that
both demand and supply factors have been at work. The decline in fertility has increased the
importance that at least one son is born among the first three children. This has intensified the demand
for abortions on the grounds of the sex of the foetus. Before 2004, Nepali women desiring abortions
had to be prepared to incur either substantial health risks (from illegal services) or costs (from going to
India) or both. The effect of the introduction of CAC services in 2004 was to reduce both the risks and
the costs, and hence to increase the number of abortions in Nepal. The reduction in risks/costs applied
to all abortions, but since a major (and increasingly important) reason for demanding an abortion in
Nepal is the sex of the foetus there has been a rise in the number of abortions performed for this reason.
It is interesting to note that the change in the CSR for second births following a first-born girl was
greatest among urban educated women, who would have been most able to afford abortions even
before 2004. The decline in fertility has been most acute among this group; if cultural forces leading to a strong desire for at least one son remain universal in Nepal, their demand for sex-selective abortions may have increased more rapidly than that of rural and less well educated women.

Clearly there are policy implications in terms of education about the long term social and demographic consequences of sex-selective abortion. While educating medical practitioners is one important step, previous research has shown that medical practitioners believe that if a woman wishes to have a sex-selective abortion she can easily obtain one in India; it may also be hard for practitioners to judge a woman’s reasons for wanting an abortion. For these reasons it is also paramount to educate wider members of the community about the illegality of sex determination tests for the sole purpose of selective abortion and the health risks associated with second trimester abortions.

Advocacy and educational campaigns amongst groups with particularly low sex ratios will be important; literate, urban women are one target group. Those living in the Terai with easy access to the Indian border are another. It is also important to remember that the use of sex-selective abortion has risen not only because of socio-cultural preferences for sons, but also because girls are seen as an economic burden. Ultimately, combating sex-selective abortion will require the empowerment of women throughout Nepali society. Programmes benefiting female children would be a start; these might include maternity incentives to mothers who give birth to a girl, education scholarships and free vocational training for girls, and economic incentives for the parents of girls.

References

Acknowledgements

This work was done independently and there were no funding sources. The views expressed within this manuscript reflect those of the authors and do not necessarily reflect the views of any institution.

Dr. Andrew “Amos” Channon provided the wealth indices used within this paper.