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Introduction:  Simulated Social Networks and Demographic Outcomes 
Demographic change is a product of a complex web of social interactions (Bongaarts and Watkins 
1996). These interactions inform, motivate and facilitate demographic events such as family 
formation, childbearing and migration, and the social fabric on which these interactions take place 
has the form of a network defining links between individuals. However, the traditional concern of 
demographers with prediction and co-development of the discipline with  probability theory has 
precluded a focus on these underlying causal mechanisms, instead focusing on describing a 
'statistical individual' (Courgeau 2012). This approach abstracts away individual behaviour in favour 
of determining the probability with which individuals experience certain events (such as death or 
childbirth). 

In contrast, this paper attempts to show that by explicitly simulating individual behaviour and 
interaction, demographers have the opportunity to examine the potential causes of population-
level patterns. More specifically, an agent-based simulation is used to examine the role of networks 
in partnership search and household formation. The research aims are detailed below: 

1. Construct an agent-based simulation of interaction and partnership search over a dynamic 
social network. 

2. To investigate the properties of the model in order to understand how it might be put to use 
in investigating the relationship between individual behaviour, network properties and 
patterns of partnership formation and demographic change.  

Background 
 

To understand why a recourse to Agent-Based Simulation is deemed appropriate for demographic 
analysis of partnership choice and household formation, we must first detail what current 
approaches in contemporary demography and related social sciences lack. To this end, a brief 
description of the methodological and epistemological allegiances of demography and particularly 
quantitative demography is helpful. It is argued that demography's focus on predictive forecasting 
and on statistical survey analysis has left the discipline under-theorised and ill-placed to analyse 
causal processes at the individual level and how these aggregate through interaction to give rise to 
population level effects (Greenhalgh, 1996; Ní Bhrolcháin & Dyson, 2007; Bachrach & McNicoll, 
2003; Billari et al.,2006; Silverman et al., 2011) While the discussion is framed in general terms, 
given the focus of the report particular examples from and household demographics are provided. 
 
A useful distinction can be drawn between demographic work at two levels of analysis; the Macro 
and the Micro. The former is concerned with broad aggregate population change, while the later 
generally is focused on the individual and the life course (Billari et al., 2006). Macro-Demography is 
associated with the use of demography in a forecasting context, and generally considers how 
population sizes, rates of events and proportions of states change over time. In the case of the 
household, the forecasting of rates of formation and dissolution largely conducted for planning 
purposes, to understand the future need for housing, for example (Keyfitz, 1987). The traditional 
way of forecasting future household stocks is the household headship rate method; this is purely 
extrapolative. The current proportion of household heads per adult is estimated for years in which 
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data is estimated, generally by age and sex. Given projections of future population the future 
number of households can be estimated either directly from current headship rates, or through 
some assumptions about how this 'rate' will change - generally through some simple extrapolation 
or regression modelling (Kono 1987, Pitkin 1987). While this is a reasonable way to obtain such 
estimates, at no point in this process is an attempt made to understand or model why past trends 
have taken place and incorporate this information into the model. 
This focus on prediction rather than on theorising and isolating underlying causal processes is 
relatively common in macro-demography. This problem not unrecognised by demographers, and 
there are notable attempts to tackle the problem of how causal analysis might be furthered in the 
study of population (Ní Bhrolcháin & Dyson, 2007; Bachrach & McNicoll, 2003). However, it remains 
the case that our understanding of casual relationships in macro-demography is 'embarrassingly 
limited' (Keyfitz and Caswell, 2005 p.270), a fact underlined by the lack of success in producing 
'structural' forecasting (that is, forecasts that predict population change based on social and 
economic covariates) (Booth 2006). 
 
As well as modelling population change in the aggregate, micro-analysis at the individual level can 
shed light on the dynamic behaviour of populations. Much individual level work is focused on 
statistical analysis of survey data, allowing demographers to examine what characteristics of 
individuals are associated with particular behaviours and with propensities to move between life-
course states. Such work is often informative; by understanding how these associations change 
over time one can understand what particular social or demographic groups are driving change at 
the macro-level, and hypotheses about what is actually causing these changes can be formulated. 
As an example, Lesthaeghe and Van Der Kaa's second demographic transition thesis (simplified 
somewhat) posits that the spread of 'post-materialist' values is responsible for delays in household 
formation and lower fertility; this theory is backed by survey and panel data that shows correlations 
between high scores on various measures such as attitudes towards gender, the family and 
personal fulfilment on one hand, and family-forming behaviour on the other (see Surkyn and 
Lesthaeghe (2004) and Lesthaeghe (2010) ). However, the survey data alone does not explain how 
the spread of such values occurs, nor why they were adopted, nor how these values manifest 
themselves in individual decision making. 
 
Greater levels of statistical sophistication can also be adopted in order to glean more information 
from surveys; in the case of the household, hierarchical multilevel models such as those advocated 
by Snijders (1999) allow us to further partial out variance explained by co-residence in households, 
as opposed to that explained by individual characteristics. Again, these techniques do not 
necessarily lead to greater information about the casual mechanisms underlying the processes in 
question: why is it exactly that households might explain some of the variance, and how do 
households come to decisions on what joint behaviour to adopt? The problems of making causal 
inference in social science, particularly through using statistical techniques to analysis survey data 
are well documented (eg. Freedman (1985), Goldthorpe, (2001), Freedman (1991), Holland (1986) , 
Ní Bhrolcháin & Dyson, 2007), and various tricks and techniques exist for trying to overcome these 
problems (see, for example, Angrist  and Pischke (2009) ) However, the contention here is that few 
of these approaches make any attempt to represent formally the way individuals make decisions, or 
the effect interactions between individuals have on the macro-level, or the feedbacks between the 
population and the individual levels (Epstein, 1996 ;  Billari, 2006 ). 
 
Some progress towards addressing these kinds of concerns is made by demographers working 
within the field of Micro-Simulation. On the face of things, micro-simulation takes a similar 
philosophy to the statistical techniques mentioned above: a population of individuals are 
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instantiated in a computer program, and are moved from state to state on the basis of empirically 
determined transition probabilities (Wachter 1987). Simulating these transitions on an individual 
basis and aggregating the results to gain macro-level data allows much more detailed forecasts and 
reconstructions of population than would be possible with macro-forecasting, but additionally allow 
the possibility of including feedbacks between micro and macro-level variables, particular when 
considering things like marriage or labour markets (Van Imhoff and Post, 1998; Willekens, 2005, 
Zinn et al. 2009).  
 
However, an additional benefit is the ability to maintain information about the links between 
individuals, and this advantage has been much used in the examination and forecasting of kinship 
networks (Reeves 1987, Smith 1987), but also represents a step towards the type of consideration 
of networks and interactions advocated in this report. Micro-simulators have also considered 
exploiting the flexibility of simulation techniques in order to explore the effect of different 
behavioural rules on macro-level variables (Murphy 2003). The early paper by Hammel (1979) 
combines these beneficial features by examining how different behavioural rules about the 
prohibition of incest affected the viability of small breeding populations, given the likely 
prominence of kin in the population and the proportions already married; feedbacks, links between 
individuals and behavioural rules are thus all considered to some extent.  
 
Models of this type give precedents for the introduction of Agent-Based Computational 
Demography (Billari et al.  2006) in the next section. Before this, however, a brief discussion of the 
existing models of partnership and households from the economic tradition is offered, with 
particular emphasis on the models associated with Gary Becker (1981). 
 

Economic approaches 

In contrast to most demographic models, economics provides a formal framework defining the 
process by which individuals are assumed to come to decisions. In the classical micro-economic 
framework, individuals optimise their package of goods with reference to some ordering of possible 
packages, usually realised in a utility function (Varian, 2010). The utility function is considered a tool 
by which agents' preferences over all packages of goods can be represented mathematically. In 
order to make choice problems solvable analytically within this framework, a number of 
assumptions are required about the nature of economic agents are required. In particular, they are 
assumed to have preferences that complete, in that they are able to place all possible packages of 
goods in order. Preferences are also assumed to be transitive, in that if one good is preferred to 
another it is also preferred to all goods that are ranked below or equal to that second good. 
Additionally, assumptions are made about agent’s ability and desire to know and consume the 
optimal package of goods (ibid). 
 
This discussion is relevant to our purposes because demographic choices can be formulated in 
economic terms. At base, micro-economics is concerned with how agents pursuing their own 
interests give rise to aggregate patterns (Mas-Colell, 1995). Gary Becker has been at the forefront 
of generalising the tools associated with this discipline for use in choice problems outside of the 
traditional realm of microeconomics, including crime and, more relevantly to our purposes, the 
demography of the family and the household (Becker, 1960, Becker, 1981). Becker's work on 
fertility, for example, examine considers that children are a consumer durable like any other, except 
that households are both the producers and consumers of such goods (Becker, 1960). Prospective 
parents, then, attempt to maximise the utility they would gain from 'consuming' children, set 
against the cost associated with 'producing' them. Preferences for children are heterogeneous, 



4 
 

determined by 'tastes', that is, by non-economic individual factors exogenous to the model (culture, 
age, religion and so forth), and may prejudice 'quality' of children (i.e. the amount invested in their 
education) over quantity. Increases in income will result in more or 'better quality' children based 
on the relative income elasticity of each property (the assumption being that quality is considerably 
more elastic). 
 
Such an analysis seems esoteric, as Becker is aware, (Becker, 1960) but it should be considered that 
it does it least provide an explanation and a formalisation of how and why people come to decisions 
about childbearing, something that is not always the case in demographic models. Becker provides 
a similar analysis of the wider workings of the household on his comprehensive "A treatise on the 
family" (Becker 1981). This describes a number of facets of household life from an economic 
perspective. For instance, the 'market' for marriage is considered, and the household is conceived 
of as a production unit in the same sense as the firm, in which inputs are transformed to outputs. 
Husband and wife are assumed to contract to divide their labour according to specialisation (with 
men assumed to more often contribute wage labour, and women household/informal labour). 
Innovations include the introduction of altruistic utility functions, in which utility of one household 
member depends positively on that of another. 
 
However, Becker's models have come under criticism from a number of directions. In the first 
instance, the empirical adequacy of some of his models has been questioned. For example, Blake 
(1968) describes how Becker's fertility model struggles to show why poorer families tend to have 
more children; this would seem to necessitate a negative income elasticity for quantity of children, 
which brings in to question whether children can really be considered a consumer durable at all. 
Differing (culturally derived) tastes might conceivably account for differences between poor and 
rich families, but if this is the case then one might ask whether the economic model is of any use 
(ibid). Furthermore there are serious questions over whether modelling marriage as an effective 
contract and exchange between men and women based on specialisation was ever viable, let alone 
in a modern environment where women place within society is more equal than ever before. 

 More comprehensive critiques of Becker's project are made by Potts (2000) and Hodgson (1993) 
from within the framework of evolutionary economics, and are discussed in the next section as 
attention is turned to alternative ways of understanding social interaction from within a 
demographic context. 

The Alternatives 
Given the short-comings of traditional models of demographic phenomena examined in the 
preceding chapter, we must consider what alternatives are available. In particular, attention was 
drawn to the problems existing models have in representing the way agents make decisions and the 
way in which they interact. Considering demography from within the paradigm of complexity 
science is one way in which we can begin to recognise the importance of this second oversight. 
Central to complexity is the premise locally interacting units can give rise to unexpected macro-
level effects, a phenomenon described as emergence (Epstein, 1996). Viewing such collections of 
units as a complete system, then, is essential to understanding how they behave, and given the 
analytical intractability of problems involving such systemic interactions and feedbacks among large 
populations, simulation methods are often required to this end.  
 
Complexity science techniques are increasingly being applied in a number of contexts within social 
science, including demography. Agent based models of social processes have gained particular 
traction (Epstein 1996). Additionally, the field of evolutionary economics provides innovative ideas 



5 
 

about how to model problems of choice and change within such complex social systems. A brief 
overview of these three fields is offered below. 
 

Agent Based Modelling 

The use of agent based simulation (ABS) in social science has gained credence in recent years as an 
alternative methodology that offers new ways of examining social processes (Epstein 1996, Billari 
2006, Gilbert 2005). The potential advantages are numerous. Firstly, ABS allows the specification of 
interdependencies between the individual (or other 'agent') and the population level, meaning that 
feedback effects between the properties at the two levels of aggregation can be modelled 
dynamically (Gilbert, 2005). Secondly, local interactions between individual agents, often crucial in 
social process involving, for example, the spread of information, can be modelled where they are 
often ignored in other modelling paradigms (in traditional micro-economics, for example) (Epstein, 
1996). Thirdly, population heterogeneity can be easily modelled, in agents attributes, in behaviour, 
and in the structure and nature of interactions (Epstein, 1996). Fourthly, ABS allows modellers to 
formalise hypotheses about causal mechanisms that link individual rules of behaviour to macro-
level outcomes (Billari, 2006; Gilbert, 2005). Fifthly, and relatedly, the plausibility of these 
hypotheses can be tested systematically because of the freedom simulation methods give 
modellers to manipulate variables (ibid). If individual level behavioural rules give rise to simulated 
macro level patterns that match those observed in the 'real world', then it is at least possible that 
this causal mechanism is a suitable explanation for these patterns in the real world (Epstein, 1996, 
Peck, 2004). Finally, the use of behavioural rules allows the onerous data collection requirements 
needed for, by way of example, micro-simulation, to be sidestepped to some extent, saving 
expense and meaning that modelling can continue when data is just not available or cannot be 
realistically measured (Silverman, 2011). 
 
Despite all these advantages, agent-based simulators should not get carried away about the 
efficacy of their tools. Despite the preceding point about testing the plausibility of causal 
mechanisms, we must accept that there are huge numbers of possible mechanisms that can give 
rise to a particular macro level pattern (Oreskes, 1994). Testing the generality and robustness of the 
relationships observed can increase our confidence in the mechanisms posited (Epstein, 2008), as 
can grounding them in theory and empirical evidence, whether quantitative or qualitative (Chattoe-
Brown, 2011). Another difficulty with ABS is the concern over the extent to which the simulation 
can be said to correspond to the real world, and therefore the nature of the scientific knowledge 
that one gains from running and analysing the model (Dopfer, 2004; Rossiter, 2010). The ability of 
agent-based models to make predictions about the future value of some real variable is certainly 
questionable, but instead it is suggested that ABS give an understanding of how systems in 
response to particular stimulus, allowing the running of various scenarios that give an idea of the 
types of plausible system state (Epstein, 2008; Silverman, 2011; Rossiter, 2010).These misgivings 
aside, it is argued that these problems are surmountable by well-designed studies that take 
seriously the task of describing exactly what the nature is of the simulation's correspondence with 
the system under study, and what scientific knowledge can be gained from the work (Rossiter, 
2010).  
 
Surprisingly given the above discussion, and the overlap with already popular micro-simulation 
methods (eg. Hammel, 1979)), agent based models in demography are still relatively rare (Billari, 
2006). There is a long tradition of work following in the footsteps of Thomas Schelling in using ABS 
to investigate urban segregation (Schelling, 1971; Bruch, 2006), and similarly there has been 
discussion within and without Demography advocating a greater use of agent-based modelling in 
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examine urban neighbourhoods (Entwisle, 2007), but core demography has not benefited from 
much Agent-based treatment. One area were agent-based models have been utilised has been in 
the study of partnership. Billari (2007) modelled agent mate search as dependent on social pressure 
emanating from their peer groups, with the increased proportion of married agents amongst peers 
leading to an increase in the intensity of search. Similarly, Hills and Todd (2008) modelled 
partnership search as an annealing process, with agents looking to marry agents who shared similar 
characteristics to themselves (modelled as bit strings). The threshold of similarity above which an 
agent will accept another as a mate declines over time as agents 'lower their standards'. Both these 
models claim to be able to reproduce marriage hazard rates that are plausible in view of empirical 
patterns. This perhaps illustrates the problem with ABS mentioned above, that there are many 
different micro level rules that could give rise to macro level patterns; both hypotheses described 
above about how individuals make decisions about who to partner with produce empirically 
reasonable macro-level patterns (Oreskes, 1994).  
 
Kniveton et al. (2011) provide another interesting use of demography in the sort of scenario 
generation role advocated in this report in the context of an examination of the effects of different 
climate change scenarios on the extent of migration from different regions of Burkina Faso. Agents 
decision making process depend on their resources and the information they have about the 
conditions abroad, as well as their mind-set and the local climactic conditions. The model describes 
how in fact greater effects of climate change do not necessary lead to more international migration, 
because migration behaviour requires the build-up of assets, which is difficult if the climate 
damages livelihoods.  
 
These studies aside, agent based modelling appears to offer much to the discipline of demography 
but as yet has delivered little. Attention is now turned to the literature on evolutionary economics 
for examples of how agent-based modelling can address questions of change and irrationality in 
social systems. 

  

Evolutionary Economics 

Discussion of economic processes in evolutionary terms can be traced at least back to 
(Schumpeter1943), who described the way capitalist systems evolve by way of a process of 
'creative destruction', a process akin to Darwinian natural selection. There remains controversy 
over the relevance of the term evolution in the context of economics, as some feel the use of 
biological terms is inappropriate for a social system, particularly given the past use of Darwinian 
metaphors to justify racist and reactionary ideologies (c.f Hodgson 1993, Hodgson 2002). Appeals to 
a biological basis for economics have also been used to justify the particular brand of 'economic 
imperialism' preached by Becker and others, in which economic tools are applied to the analysis of 
more general social systems (c.f. Hodgson, 1993; Becker, 1981). In both cases, scarce resources, 
self-interest and competition are assumed to be universal features of biology, sociology and 
economics, and 'natural' outcomes from the operation of these forces are generally assumed to 
give rise to optimal situations. The natural is assumed to be synonymous with the good. In fact, this 
relies on a somewhat mistaken conception of the nature of evolution and biological systems; in 
reality, evolutionary forces do not necessarily give rise to optimal solutions as organisms attempt to 
find satisfactory niches rather than maximal solutions, and self-interest is considered to be relevant 
in biology at the level of the gene rather than the individual (Hodgson, 1993; Dawkins, 1976).  
Furthermore, Potts (2000) makes clear what he believes is another problem with this Neo-classical 
equilibrium theory. He claims it is built on the underpinning assumption that economic activity 
takes place on the completely interconnected, continuously integrable field space   . This 
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assumption, Potts argues, is completely inappropriate for economic systems, and is the underlying 
cause of the majority of heterodox economic critiques of neo-classical microeconomics. The much 
criticised assumptions of perfect rationality and perfect information and recourse to analysis of 
static equilibria are all the result of this edict about the nature of economic space; complete 
interconnection between agents and markets demands that information be complete, and the 
constraints on preferences imposed by field space make irrationality difficult to treat while 
maintaining analytical tractability. Neo-classical treatment of time through continuous future 
markets are again the result of constraints of the field space; time can only be introduced as an 
extra dimension in the field and then optimised over (Potts, 2000). 
 
In contrast, conceptualising economics as evolutionary allows an understanding of time that is non-
reversible; it admits the possibility that individuals can err in their decision making; it gives the 
opportunity of studying non-equilibrium situations; and can cope with population variation, 
diversity and local interaction (Hodgson, 1993). These properties stand in marked contrast to the 
neo-classical framework (Loasby, 1989; Hodgson, 1993; Potts, 2000). Furthermore, evolutionary 
economic simulation models can take seriously the importance of defining the nature of economic 
space (Kirman, 2011). For Potts (2000), economic activity must be defined in terms of the 
connections between elements, and how these change, break and strengthen. These elements 
might be resources involved in the formation of technology, individuals in the organisation of a 
firm, or firms within a market or supply chain; but what matters is their configuration and the 
nature of the connections between them (or, crucially, the lack thereof).  
 
The focus on dynamism and change, and perhaps, its Schumpeterian heritage, means that 
evolutionary economics has most often been employed in the study of innovation and creativity 
(Pyka2003, Potts2008). So why should agent-based demographers be interested in evolutionary 
economic models? While Becker's economic imperialism has been rejected above, there appears to 
be plenty of overlap between the problems of evolutionary economics and those of demography; 
both are often concerned with the ways in which people interact and the way in which they 
approach problems of choice ( whether in the market-place or in a family context). Potts (2000) 
explicitly discusses the prospect of a 'second wave' of imperialism, in which evolutionary economic 
ideas can be applied to the demographics of the household, and the model described in the next 
chapter is an preliminary instantiation of a model of household formation, operation and 
dissolution sketched by Potts in this context. 

 

Model and Methodology 

The conceptual scheme that Potts' model is based upon assumes that connections between 
elements matter; this section follows closely the exposition in Potts (2000). At the lowest level, this 
means that the development of technology can be modelled as the combination of resources 
(through connections), with the product of combinations having the potential to be more valuable 
than the mere some of their parts. New technologies formed by connections of resources can then 
become new elements in higher-level technologies (that is, technologies formed from combinations 
of existing technologies). This system-element duality allows the bootstrapping, runaway qualities 
of technological development to be captured.  
 
Economic agents, then, attempt to form beneficial technologies from the resources that are 
available to them. Even with a small number of resources, however, the number of possible 
technologies becomes very large. A 'perfectly rational' agent, in the neo-classical sense, would 
consider all possible combinations and pick the best. However, this is just not possible for real 
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actors given constraints on time, knowledge and cognition. Instead, then, agents develop heuristic 
rules about the sort of technologies they want to consume/create. Agents are pragmatic searchers, 
not hyper-aware optimisers. 
 
How is this modelled in simulation? Agents are endowed with a set of resources, represented by a 
bit string. Technologies are specific combination of the elements of these strings. In order to work 
out which elements to connect agents have a population of preferences, each representing a 
possible combination of resources which is hoped to be a good candidate technology. These 
preferences are both conjectural and incomplete; agents may find upon constructing the 
technology that they were wrong to prefer it, and some sites within the bit string are blank, 
representing parts of the technology that the agent is indifferent about. Referring to these 
incomplete, heuristic preferences saves agents from having to address the whole search space, and 
also properly represents the individual irrationality and uncertainty through the incompleteness 
and falsifiability of preferences.  
 
Furthermore, through allowing preferences to evolve in response to external feedback, agents can 
adapt to novelty and learn from their environment. This requires submitting the agents' preference 
population to a genetic algorithm as a proxy for a learning process; in the version of the model 
created here, a very simple GA was used. Preferences were reproduced in the next generation in 
proportion to their success in use, while preferences were mutated with a tuneable probability. A 
number of mutation operators were used following Potts (2000): 

 Point Mutation: Non-empty preference characters at a particular site can mutate to a 
different value. 

 Grow Preference: Preferences of length n can grow so that a more complicated technology 
of length n+1 is preferred. 

 Shrink Preference: Preferences of length n can be considered too complicated, and the 
preference string becomes shorter. 

 Fill Preference: An empty preference sites (where the agent is ambivalent about what 
element is placed there) is filled, and so the agent becomes more specific about the type of 
technology he or she prefers. 

 Empty Preference: A filled preference site is emptied, making the agent less certain about 
possible good areas to search for technologies. 

 Shuffle Preference: Elements in the preference bit string are shuffled at random. 
One can think of the process of mutation as representing a human tendency to experiment, with 
possibly negative results. In order to provide feedback to the genetic algorithm, however, it is 
necessary to somehow score different technologies. This is done on the basis of a predetermined 
'utility' function, that is not accessible or know about by the agents, similar to the set-up in 
(Sayama, 2011). The utility function is designed to reflect Potts’ (2000) point about the importance 
of connection and the non-integrable nature of economic space by ensuring that the order and 
number of connections in a technology matter, and scores are not just the sum of parts. To this 
end, a random number is generated for each possible resource value, and a technology is scored by 
multiplying for each site that element's score by the position in the bit string it holds. Thus, longer 
resources strings are more disproportionately more valuable, and the same resources will get 
different scores if they are combined in different ways. 
 
In this version of the simulation, agents are not favoured with any demographic characteristics - 
they are sexless, ageless, immortal network dwellers. However, demographic characteristics are 
latent in the underlying code, and there in future work on this topic it may be possible to utilise 
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such characteristics. Additionally, resources in this case are psychological or otherwise internal to 
the agent, and may not be traded or used up. 
 
Interaction 
At present the focus has been only on individual agents, and not on their interaction. In this 
simulation, agents choose to interact with other agents based on a tag-matching process. One 
element from each agents preference population is 'displayed' during each interaction. If these 
preferences match, in the sense that each site in the other agent's preference string the element 
either matches the other agents or has an indifferent "#" (empty) character, the initiating agent 
may access the other agent's resource set in order to attempt to form a technology based on the 
preference displayed. Any resulting utility is attached to the relevant preference string in both 
agents, to inform the reproductive success of that preference. However, only the additional cost 
over and above what could have been obtained by that agent exercising the relevant preference 
alone is counted, to account for opportunity cost the interaction represents. 
A single model time-step, then, involves a large number of attempted interactions between agents 
(scaled to allow enough interactions to ensure sufficient feedback for each agents GA), and then 
the reproduction of agents preferences according to the relative success of these interactions. In a 
more sophisticated model, an attempt would also be made to model partnership by allowing the 
creation of combinatorial 'multi-agents', where resources, technologies and decision-making, 
preferences and interaction could all be shared. This has been left for future work, however. 
 
The Network 
As has been intimated, the effect of interaction between agents depends not only on their nature 
but on how they are structured. Clearly, not all individuals in any moderately large population will 
interact regularly with every other agent. The obvious way to capture this is to embed agents within 
an network, where network vertices represent agents, and edges between agents representing that 
the two agents know each other and come into regular contact. Agents can then only interact with 
their network neighbours. The question is then what type of network the agents should be 
embedded in. The structure of networks has generated voluminous literature, with discussion of 
their small world nature and the nature of their degree distributions (Newman, 2003). Given the 
exploratory nature of this study, there has not been a great deal of focus placed on what type of 
networks the agents should be initialised on, and instead, the varying effects of parameters on the 
same type of initial network has been examined. 
 
The framework developed by Watts and Strogatz (Watts, 1998; Watts, 1999) was used to generate 
the initial network; the parameters used for this purpose are given in the appendix (along with 
other parameters settings), and aim to initialise a network in the small world realm, that is, with an 
average shortest path length that is close to that for a random graph of the same size, but with a 
clustering coefficient that is much higher than the random equivalent (ibid). When considering 
dynamic network behaviour, some simple rules were postulated as to how network links could be 
created and destroyed along the lines of those proposed by Jin, (2001), but with edge weight data 
generated from the interactions between agents. Again, in a more specific application of the type of 
model explored here, a more rigorous and empirically grounded approach to setting these rules 
might be adopted, but for the present purpose simple rules were assumed to suffice. 
In this instance, then, each agent rewires one of his network connections with a certain probability 
each time-step. Edges are weighted by the past utility attached to interactions between the two 
agents the edge connects, and this weight decays exponentially with time. An agent rewires by 
disconnecting his weakest neighbour, and adding an edge to one of his strongest neighbour's 
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neighbours. For some simulation runs, in common with Jin (2001), the degree distribution of agents 
was managed probabilistically so that it remained close to its initial value.  

 A single model time-step, then, involves a large number of attempted interactions between agents, 
and then the reproduction of agents’ preferences and the modification of network ties according to 
the relative success of these interactions. In the version of the simulation reported here, agents are 
not favoured with any demographic characteristics - they are sexless, ageless, immortal network 
dwellers.   

 

 

Results 
The previous sections attempted to motivate the use of agent based models with roots in network 
theory and evolutionary economics for use in better understanding processes underlying the 
demographics of the household, and described the features of the prototypical model used here to 
examine the feasibility of such a project. We now move on to describe how this model behaves so 
that its suitability for investigating demographic phenomena can be assessed. The highly abstract 
and exploratory nature of the model means there are a large number of variable parameters, and a 
larger number of possible 'structural' changes (involving making different assumptions about the 
processes that underlay the model behaviour) that would likely change model behaviour. 
No attempt is made to try and systematically explore all elements of the parameter space in this 
section. Instead, some particular facets of the model are described that might be considered 
particularly relevant given the motivations for model building discussed above. Of particular 
interest are the effect on the evolution of preferences of the topological structure of interactions, 
the interaction between the processes of preference formation and network evolution, and the 
extent to which the types of resources and complexity of technologies that agents may form in their 
interactions with each other effects the overall model behaviour.  
The model described in this section was coded in Python 2.7, and the Networkx Python package 
was used to handle network formation and evolution1. The R statistical programming language was 
used for analysis and graph plotting. Simulations were run with 200 agents only, for 400 time-steps 
in the case of dynamic networks, although longer run simulations were explored. Each parameter 
setting was run for 8-10 iterations in order to gain more robust results. Score values for resources 
elements were randomly assigned, but were set just once and kept the same between different 
parameter runs, as these were found to have a significant influence on the behaviour of the system. 
 
Structure in Interaction 
One of the primary contentions of the evolutionary economic approach is that the structure of 
interactions between matter (Potts, 2000; Kirman, 2011). Using the model constructed above we 
can observe how the agent's preferences and utility differ when they interact with other members 
of the population at random to when they interact only with their neighbours. Similarly, we can 
consider the differences between static and dynamic networks.  
  
 
 
 
 
 

                                                             
1 The current version of the model code is available at https://bitbucket.org/jhilton/evoeconhousehold 

https://bitbucket.org/jhilton/evoeconhousehold
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Figure 1: Comparison of Average Agent Interaction Utility on Different Network Types 

a) Agents endowed with 10 resources           b) Agents endowed with 5 
resources 

 

 
Figure 1 displays how average utility gained from interaction increases over time for random 
interactions, and for dynamics and static networks. As might be expected, when agents are forced 
interact with agents at random amongst the population, they are unable to gain enough 
information from these interactions to adapt their preferences in any useful way and therefore 
receive a low return in terms of utility. Because they have interaction with such a large number of 
other agents, they do not meet the same agent again frequently enough to evolve preferences to 
deal with that situation; the amount of noise in the system is too large.  
When we consider the behaviour of a static network in figure 1a we see a rather different picture 
emerging. Because agents always interact with the same agents time and again, they quickly evolve 
mutually beneficial preferences, and are able to gain rewards in terms of utility, and hence agents 
on static networks have higher utility rewards than their equivalents on dynamic networks or in 
randomly interaction populations. 
A dynamic network, where agents tend to meet the same agents repeatedly, but in which they 
rewire their connections according to the success of their interactions, shows slightly lower average 
utility than in the case of static network for our default parameters. Here, the need to cope with 
novelty would appear to require more time adapting, which results in lower utility overall. 
However, if we alter the number of resources each agent holds, dynamic network agents actually 
perform better than those on a static network because, it is suggested, of their ability to 'search 
out' agents with useful resources, who are now less likely to already be in the agents 
neighbourhood. This effect can be seen in Figure 1b; note that overall level of utility is much lower, 
however. 
These results are not unexpected, but it is worth drawing attention to here because of the link to 
neo-classical economic models: the idea of local interactions is meaningless in these sorts of 
models, as is the idea that agents are unable to find an optimal solution to their trading. Thus, the 
introduction of evolved preferences and network interaction to our model helps shows how 
microeconomic assumptions might be misleading, although this result is fairly trivial and perhaps 
does not require simulation to infer. 
Network Evolution 
We have seen how, when embedded in a dynamic network, agents evolve preferences that enable 
them to interact with each other and increase their utility. But how does the topology of the 
network in which they are embedded behave? The results presented so far have been produces of 
models where agents are constrained to remain close other initial average degree distribution, by 
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introducing a probability of break or making a tie that is proportional to the extent to which that 
agent is over- or under- connected; this can be interpreted in terms of the cognitive or social 
constraints on the number of friends it is possible to maintain (Jin, 2001). 
 
Figure 2: Network Clustering and Average Shortest Path Length over the course of the simulation 

 
Figure 2 shows how the clustering and shortest path length statistics for such a model. These seem 
to indicate a 'small world' type model, with an average path length close to the random equivalent 
(around 4 in this case), and a level of clustering that remains high. Figure 3a displays the topology of 
a similar network (albeit one based on slightly different parameters). Distinct clusters are visible, as 
well as the more disconnected individuals who are off screen on this image.  
It is also possible to allow agents to gain as many links as they want, and not attempt to lose edges 
if they become over connected. In this case, the graph tends to approximate a random graph 
relatively quickly, and a super-connected cluster of nodes with high degree distribution dominates 
the group, as in figure 3b Degree distributions in such a case follow a familiar scale-free type 
pattern, with large numbers of low degree nodes and ever fewer numbers at higher degrees, 
although the fit of this curve was not explicitly examined. Instead, the decision was made to focus 
on the case were numbers of 'friends' remains roughly equal across agents (Jin, 2001). 
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Figure 3: Visualisations of simulated networks 

a) Constrained number of network neighbours             b) Unconstrained number of 

neighbours. 

 

Preference Evolution 
So far we have not discussed in detail the process of preference evolution and the nature of 
populations produced, the so called 'meso-level' of evolutionary economics (Dopfer, 2004). Figure 4 
shows details of the distribution of certain properties of agents' individual preference populations, 
across all agents and all simulation runs on the default settings. We see that agents tend to evolve 
preferences that have some outward facing sites, that is, some of their preference sites refer to 
resources held by other agents, indicating that agents are indeed evolving preferences to facilitate 
interaction with others.  
Similarly, the maintenance of some heterogeneity in the preference populations (Figure 4c) by 
almost all agents suggests that agents maintain flexible preferences that allow them to interact 
with more than one neighbour2. 
 
Intriguingly, ad hoc comparison of the preference strings of neighbouring agents suggests that 
'interlocking' preferences are developed, where blank sites on one agent match with filled sites on 
a neighbour, suggesting that tag matching drives the preference selection process. This may explain 
the varying distribution of 'filled' (ie non-blank) sites in figure 4b. A more systematic approach to 
investigating this process is required for future work however, however. Less interesting is the 
convergence to longer preference strings (figure 4d) as these provide more utility by design, it is 
unsurprising that preference have converged towards this value. It does provide some indication 
that the GA is having the desired effect, however. 
Neglected areas 
As previous intimated, the nature of the model means that the potential variations that could be 
examined are very large. The above results do however give a flavour of how the model behaves. 
However, other investigations could potentially form interesting areas for examination. For 
instance, the tag-matching process by which the agents transmit information to one another was 
not examined here. Similarly, the effect of the relative time-scales on which the network and the 
preference evolution occurred was examined only briefly through manipulation of the rewiring 
probability, and the full effect on edge persistence was not examined. The effect of the way in 
which combinations and interactions were scored was also overlooked - this looks to be a 

                                                             
2 Heterogeneity is measured here as the number of unique preferences in the population over the preference population size for each agent (50), 
giving a range from 1/50 (very homogenous) to 1 (very heterogenous) 
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potentially significant parameter if few resource types are involved, given that a large difference 
between runs was found if the randomly generated scores attached to resources values were 
allowed to vary between runs. 

 

 

Figure 4: Preference Population Metrics 

 
 

 
Discussion  
The model described above provides a point of departure from statistical and microeconomic 
models of social interaction in that it allows a hypotheses about the process underlying interaction 
to be modelled, and recognises the importance of locality and imperfect information. The model 
also maintains in the medium term a structure that fits some authors' characterisation of social 
networks (Watts 1998, Jin 2001), and takes seriously the importance of history and chance; an 
agent's evolved preferences will depend upon what other agents it has happened to be connected 
to through the network structure. 
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The addition of full demographic characteristics including birth, death and household formation 
onto the generalised model of interaction discussed in this above, and the introduction of a 
threshold network link strength above which a household can be created, allowing the modelling of 
partnership by the creation of combinatorial 'multi-agents', where resources, technologies and 
decision-making, preferences and interaction can all be shared. This will also allow the creation of 
hazard rates for ‘marriage’ and ‘divorce’, as the passing of these thresholds can be treated as 
demographic events. 

Statistical emulation techniques developed for use in analysing complex computer simulations 
(Oakley and O'Hagan 2002, 2004) can then facilitate the calibration of the model to empirical data 
on partnership formation. The hypotheses of Potts (2000) and Hills and Todd (2008) regarding a link 
between increased 'cultural complexity' and the tendency towards later partnership formation can 
then be tested. This will be achieved systematically varying the parameters relating to individual 
resources as a proxy for such complexity, and examining the temporal pattern in the resulting 
simulated partnership hazard rates. Additionally, the effect of different networks structure and 
search strategies on such hazard rates can then be tested and observed. Having a test bed for 
examining the relationship between demographic outcomes and social network evolution is 
potential of value to the discipline; particularly given greater concern in recent years with how 
social networks affect demographic outcomes (Montgomery et al. 1998, Entwisle 2007).  

Conclusion 
The work detailed in this paper makes two small contributions to our understanding of how social 
networks affect demographic outcomes. Firstly, it describes a plausible model of social interaction 
over a dynamic social network, in which agents have incomplete, evolving and falsifiable 
preferences as to who they would like to interact with. Given the importance of social interaction to 
demographic outcomes, this may prove a useful point of departure for future work. Secondly, a 
version of this model augmented with demographic attributes could be used to examine how the 
nature of the networks on which social interactions take place affect partnership choice and 
household formation – it is hoped that future work will address this challenge. 

 A wider research agenda, inspired by the suggestions of Chattoe-Brown (2009), might 
consider the opportunities for integrating qualitative data with agent-based social interaction 
models such as the one described here. Rich micro-level ethnographic or interview based detail 
about the structure of social networks and/or the nature of human decision making should be 
formalised in agent-based simulations, and the causal implications for macro-level population 
change examined through experimentation.   

Engineering & Physical Sciences Research Council grant EP/H021698/1 Care Life Cycle is gratefully 
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Bibliography 

Angrist, J., & Pischke, J.-S. (2009). Mostly Harmless Econometrics. New Jersey: Princeton Univeristy Press. 

Bachrach, C., & McNicoll, G. (2003). Introduction to 'Causal Analysis in the Population Sciences: A 
Symposium'. Population and Development Review, 29 (3), 443{447. 

Becker, G. (1981). A treatise on the family. Cambridge MA: Harvard University Press. 



16 
 

Becker, G. S. (1960). An Economic Analysis of Fertility. In Demographic and Economics Change in Developed 
Countries, (pp. 209{231). New York: Columbia National Press. 

Billari, F., Fent, T., Prskawetz, A., & Aparicio Diaz, B. (2007). The "Wedding-Ring". Demographic Research, 17 , 
59 

Billari, F., Fent, T., Prskawetz, A., & Schefran, J. (2006). Agent Based Computational Modelling: An 
Introduction. In F. Billari, T. Fent, A. Prskawetz, & J. Schefran (Eds.) Agent 

Based Computational Modelling, chap. Introducti, (pp. 1{14). New York: Physica-Verlag. 

Blake, J. (1968). Are Babies Consumer Durables?: A Critique of the Economic Theory of Reproductive 
Motivation. Population Studies, 22 (1), pp. 5{25. 

Booth, H. (2006). Demographic Forecasting: 1980 to 2005 in review. Interational Journal of Forecasting, 22 , 
547-581. 

Bruch, E. E., & Mare, R. D. (2006). Neighborhood Choice and Neighborhood Change. American Journal of 
Sociology, 112 (3), 667-709. 

Chattoe-Brown, E. (2011). Gin and Tonic or Oil and Water? Can We Integrate Research Methods Rather Than 
Just Mixing Them? URL http://www2.le.ac.uk/departments/sociology/documents/staff-
publications/ginoilweb.doc 

Clark, A. (1997). Being There: Putting Brain, Body, and World Together Again. Cambridge MA: MIT Press. 

Dawkins, R. (1976). The Selsh Gene. Oxford: Oxford University Press, third ed. 

Dennett, D. C. (1996). Kinds of Minds. London: Weidenfeld & Nicolson. 

Di Paulo, A. E., Noble, J., & Bullock, S. (2000). Simulation Models as Opaque Thought Experiments. In Seventh 
International Conference on Articial Life, (pp. 497{506). Cambridge MA: MIT Press. 

Dopfer, K., Foster, J., & Potts, J. (2004). Micro-meso-macro. Journal of Evolutionary Economics, 14 (3), 263- 
279. 

Edmonds, B., & Moss, S. (2004). From KISS to KIDS an anti-simplistic modelling approach. In P. Davidsson et al. 
(Ed.) Multi-Agent Based Simulation: Springer Lecture Notes in Articial Intelligence, (pp. 130{144). Springer. 

Entwisle, B. (2007). Putting people into place. Demography, 44 (4), 687-703 

Epstein, J. M. (2008). Why model? Journal of Articial Societies and Social , 11 (4). 

Epstein, J. M., & Axtell, R. (1996). Growing Artical Societies; Social Science from the Bottom Up. Washington 
DC; Cambridge (US): Brookings Institution Press; MIT Press. 

Erbach-Schoenberg, E., McCabe, C., & Bullock, S. (2011). On the interaction of adaptive timescales on 
networks. In European Conference on Articial Life. Paris. 

Freedman, D. (1985). Statistics and the Scientific Method. In Cohort Analysis in Social Research: Beyond The 
Identification Problem, (pp. 343{390). New York: Springer-Verlag. 

Freedman, D. (1991). Statistics and Shoe Leather. Sociological Methodology, 21 , 291-313. 

Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the Social Scientist. Maidenhead: Open University Press, 
2nd ed. 

Goldthorpe, J. (2001). Causation, statistics, and sociology. European Sociological Review 17 (1), 1-20. 



17 
 

Greenhalgh, S. (1996). The Social Construction of Population Science: An Intellectual, Institutional, and 
Political History of Twentieth-Century Demography. Comparative Studies in Society and History, 38 (01), 26. 

Hammel, E., McDaniel, C., & Wachter, K. (1979). Demographic consequences of incest tabus: a 
microsimulation analysis. Science, 205 (4410), 972-977. 

Hills, T., & Todd, P. (2008). Population Heterogeneity and Individual Dierences in an Assortative Agent-Based 
Marriage and Divorce Model ( MADAM ) Using Search with Relaxing Expectations. Journal of Artificial 
Societies and Social Simulation, 11 (4 5). 

Hodgson, G. M. (1993). Economics and Evolution: Bringing Life Back into Economics. Cambridge: Polity. 

Hodgson, G. M. (2002). Darwinism in economics: from analogy to ontology. Journal of Evolutionary 
Economics, 12 (3), 259-281. 

Hodgson, G. M. (2007). Evolutionary and Institutional Economics as the New Mainstream? Evolutionary and 
Institutional Economic Review, 4 (1), 7{25. 

Holland, P. W. (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 81 (396), 
945{960. 

Jin, E. M., Girvan, M., & Newman, M. E. J. (2001). The structure of growing social networks. Physical Review E, 
54 . 

Keyfitz, N. (1987). Form and Substance in Family Demography. In J. Bongaarts, T. Burch, & K. W. Wachter 
(Eds.) Family Demography: Methods and their Application1 , chap. 1, (pp. 3-16). Oxford: Oxford University 
Press. 

Keyfitz, N., & Caswell, H. (2005). Applied Mathematical Demography. New York: Springer, third ed. 

Kirman, A. (2011). Complex Economics: Individual and Collective Rationality. Abingdon:Routledge. 

Klamer, A., & Leonard, T. (1994). So what's an economic metaphor. In P. Mirowski (Ed.) Natural Images in 
Economic Thought: "Markets Read in Tooth and Claw", chap. 2, (pp. 20-54). Cambridge: Cambridge University 
Press. 

Kniveton, D., Smith, C., & Wood, S. (2011). Agent-based model simulations of future changes in migration  
ows for Burkina Faso. Global Environmental Change, 21 , S34-S40.  

Kono, S. (1987). The Headship Rate Method for Projecting Households. In J. Bongaarts, T. Burch, & K. W. 
Wachter (Eds.) Family Demography: Methods and their Application, chap. 15, (pp. 287{308). Oxford: Oxford 
University Press. 

Lesthaeghe, R. (2010). The Unfolding Story of the Second Demographic Transition. Population and 
Development Review, 36 (2), 211-251. 

Loasby, B. J. (1989). The Mind and Method of the Economist. Hampshire: Edward Elgar. 

Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic Theory. Oxford: Oxford University 
Press. 

Maslow, A. (1943). A theory of human motivation. Psychological review, 50 (4), 370-396. 

Minsky, M. (1988). The Society of Mind. Touchstone book. New York: Simon & Schuster. 

Mirowski, P. (1994). Doing what comes naturally: four meta-narratives on what metaphors are for. In P. 
Mirowski (Ed.) Natural Images in Economic Thought: "Markets Read in Tooth and Claw", (pp. 3{19). 
Cambridge: Cambridge University Press. 



18 
 

Montgomery, M., Casterline, J., & Heiland, F. (1998). Social networks and the diffusion of fertility control. 
Policy Research Division Working Paper No 119, Population Council, New York.  

Murphy, M. (2003). Bringing behaviour back into micro-simulation : Feedback mechanisms in demographic 
models. In F. Billari, & A. Prskawetz (Eds.) Agent Based Computational Demography: Using Simulation to 
Improve Our Understanding of Demographic Behaviour. Heidelberg: Physica-Verlag. 

Newman, M., & Park, J. (2003). Why social networks are dierent from other types of networks. Physical 
Review E, 68 . 

Ni Bhrolchlain, M., & Dyson, T. (2007). On Causation in Demography : Issues and Illustrations. Population and 
Development Review, 33 (1), 1-36. 

Oakley, J., & O'Hagan, A. (2002). Bayesian inference for the uncertainty distribution of computer model 
outputs. Biometrika, 89 (4), 769-784. 

Oakley, J., & O'Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: a Bayesian approach. 
Journal of the Royal Statistical Society: Series B, 66 (3), 751-769. 

Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical 
models in the earth sciences. Science, 263 (February), 641-646. 

Peck, S. L. (2004). Simulation as experiment: a philosophical reassessment for biological modelling. Trends in 
ecology & evolution, 19 (10), 530-4 

Pitkin, J. R., & Masnick, G. S. (1987). The Relationship between Heads and Non-Head in the Household 
Population: An Extension of the Headship Rate Method. In J. Bongaarts, T. Burch, & K. W. Wachter (Eds.) 
Family Demography: Methods and their Application, chap. 16, (pp. 309{326). Oxford: Oxford University Press. 

Potts, J. (2000). The New Evolutionary Microeconomics. Cheltenham: Edward Elgar. 

Potts, J., Cunningham, S., Hartley, J., & Ormerod, P. (2008). Social network markets: a new definition of the 
creative industries. Journal of Cultural Economics, 32 (3), 167-185. 

Pyka, A., & Ahrweiler, P. (2003). Applied Evolutionary Economics and Social Simulation. Journal of Artificial 
Societies and Social Simulation , 7 (2). 

Reeves, J. H. (1987). Projection of Number of Kin. In J. Bongaarts, T. Burch, & K. Wachter (Eds.) Family 
Demography: Methods and their Application, chap. 12, (pp. 228{248). Oxford: Clarendon Press. 

Rossiter, S., Noble, J., & Keith, B. (2010). Social simulations : improving interdisciplinary understanding of 
scientific positioning and validity. Journal of Artificial Societies and Social Simulation, 13 ((1), 10), 1-58. 

Sayama, H., Farrell, D. L., & Dionne, S. D. (2011). The Effects of Mental Model Formation on Group Decision 
Making: An Agent-Based Simulation. Complexity, 16 (3), 49{57. 

Schelling, C. (1971). DYNAMIC MODELS OF SEGREGATION. Journal of Mathematical Sociology, 1(May), 143-
186. 

Schumpeter, J. (1943). Capitalism, Socialism and Democracy. Abingdon: Routledge. 

Silverman, E., Bijak, J., & Noble, J. (2011). Feeding the Beast : Can Computational Demographic Models Free 
us from the Tyranny of Data ? In Advances In Articial Life, ECAL 2011: Proceedings of the Eleventh European 
Conference on the Synthesis and Simulation of Living Systems, (pp. 747{757). MIT PRess. 

Smith, J. E. (1987). The Computer Simulation of Kin Sets and Kin Counts. In J. Bongaarts, T. Burch, & K. 
Wachter (Eds.) Family Demography: Methods and their Application chap. 13, (pp. 249-266). Oxford: 
Clarendon Press. 



19 
 

Snijders, T., & Bosker, R. (1999). Multilevel Analysis. London: Sage Publications. 

Surkyn, J., & Lesthaeghe, R. (2004). Value Orientations and the Second Demographic Transition ( SDT ) in 
Northern , Western and Southern Europe. Demographic Research, Special Co, 45-86. 

Van Imhoff, E., & Post, W. (1998). Microsimulation methods for population projection. Population. English 
selection, 10 (1), 97-138. 

Varian, H. (2010). Intermediate Microeconomics. London: W. W. Norton and Company, eighth ed. 

Wachter, K. W. (1987). Microsimulation of Household Cycles. In J. Bongaarts, T. Burch, & K. Wachter (Eds.) 
Family Demography: Methods and their Application, chap. 11, (pp. 215{227). Oxford: Clarendon Press. 

Watts, D. J. (1999). Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton: 
Princeton Univeristy Press. 

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393 (6684), 440-2. 

Willekens, F. (2005). Biographic forecasting: Bridging the micro-macro gap in population forecasting. New 
Zealand population review, 31 (1), 77-124.  

Wooldridge, M. (2002). An introduction to MultiAgent Systems. Chichester: Wiley. 

Zinn, S., Gampe, J., Himmelspach, J., & Uhrmacher, A. M. (2009). Mic-Core: A Tool for Microsimulation. In E. 
M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls (Ed.) Proceedings of the 2009 Winter 
Simulation Conference, (pp. 992{1002). IEEE. 


