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Abstract	

Background:	

In	the	absence	of	a	well‐functioning	vital	registration	system	to	track	mortality	in	a	
population,	health	planners	often	rely	on	routine	health	surveys	to	provide	this	most	
basic	health	information.	Sibling	survival	histories,	where	a	survey	respondent	is	asked	
about	each	of	his	or	her	siblings’	births	and,	if	applicable,	deaths,	provide	a	direct	way	to	
estimate	adult	mortality	by	survey.	The	purpose	of	this	paper	is	to	refine	the	methods	
which	account	for	the	selection	bias,	zero‐surviving	reporters	and	recall	bias	inherent	in	
these	surveys	to	generate	plausible	estimates	of	adult	mortality	risks	even	in	the	
presence	of	a	relationship	between	family	size	and	adult	mortality.	
	

Methods:	

We	have	implemented	changes	to	the	previous	method,	referred	to	as	the	Corrected	
Sibling	Survival	(CSS)	method,	such	that	it	(1)	uses	appropriate	survival	weights	that	
account	for	the	study	design,	and	(2)	recovers	the	mortality	experience	of	the	families	
that	are	not	represented	because	none	of	the	siblings	is	alive	and	eligible	to	respond	to	
the	survey.	We	validate	these	methodological	developments	in	a	range	of	simulation	
environments.	We	also	present	new	ways	of	adjusting	for	recall	bias	and	handling	
sparse	data	in	survey	designs	where	the	age	range	of	the	respondents	is	narrower	than	
the	age	range	desired	for	estimation.	We	apply	these	methods	to	sibling	history	data	
from	a	number	of	sources	and	compare	the	agreement	between	the	estimates	from	
sibling	histories	and	other	sources	of	adult	mortality	data	where	available.	
	

Results:	

Simulation	results	demonstrate	that	the	method	generates	unbiased	estimates	of	adult	
mortality	when	there	is	zero	association	between	family	size	and	mortality;	the	
estimates	are	too	high	in	the	presence	of	positive	association,	and	too	low	in	the	
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presence	of	negative	association,	although	the	bias	is	only	statistically	significant	at	the	
highest	positive	levels	of	association	observed	in	actual	survey	data.	When	compared	to	
estimates	of	adult	mortality	from	independent	sources	of	mortality	data,	estimates	from	
sibling	history	surveys	are	comparable.		
	

Conclusions:	

Surveys	with	sibling	histories	can	be	used	to	generate	plausible	estimates	of	summary	
indicators	of	adult	mortality	and	provide	valuable	information	on	the	levels	and	trends	
of	adult	mortality	in	settings	where	vital	registration	systems	do	not	exist.	
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Background	

In	the	absence	of	a	well‐functioning	vital	registration	system	to	track	mortality	in	a	
population,	health	planners	often	rely	on	routine	health	surveys	to	provide	this	most	
basic	health	information.	As	death	is	increasingly	postponed	to	adult	and	older	ages,	it	is	
becoming	even	more	important	to	be	able	to	reliably,	and	cost‐effectively,	measure	
levels	and	trends	in	adult	mortality.	Yet	for	the	majority	of	low	and	middle	income	
countries,	vital	registration	systems	that	register	births	and	deaths	in	populations	are	
still	very	incomplete,	and	it	may	well	take	decades	before	they	can	be	used	for	
monitoring	mortality.	Sibling	survival	histories,	where	a	survey	respondent	is	asked	
about	each	of	his	or	her	siblings’	births	and,	if	applicable,	deaths,	provide	a	direct	and	
more	immediate	way	to	estimate	adult	mortality	from	surveys,	pending	improvements	
to	vital	registration	systems.	A	cross‐sectional	survey	not	only	provides	current	
estimates	of	population‐level	mortality	risks;	it	can	also	provide	information	about	
mortality	trends	10‐15	years	ago.			
	
Despite	the	critical	importance	of	reliable	information	on	adult	mortality,	enthusiasm	
for	using	sibling	histories	to	estimate	levels	and	trends	of	adult	mortality	has	been	
tempered	by	concerns	of	selection	and	recall	bias,	as	well	as	general	data	quality	
concerns.1‐5	For	more	than	20	years,	researchers	have	attempted	to	address	some	of	the	
shortcomings	of	sibling	history	data	and	to	extract	more	accurate	estimates	of	adult	
mortality.2‐4,6,7	This	paper	builds	upon	previous	methodological	research	to	address	key	
biases	in	sibling	history	data	and	presents	an	improved	method	which	is	less	reliant	
upon	assumptions	than	methods	commonly	used	in	current	practice.	
	
A	major	source	of	bias	in	sibling	history	data	is	recall,	specifically	omission,	bias.	
Comparison	of	results	across	multiple	surveys	from	the	same	country	suggests	that	
respondents	tend	to	under‐report	deaths	of	siblings	which	have	occurred	in	the	distant	
past.2,3,5	Statistical	solutions	to	adjust	for	recall	bias	are	thus	essential	if	sibling	history	
based	data	are	to	be	useful	for	guiding	policy	and	programs	to	reduce	premature	adult	
mortality.	Recent	research	has	demonstrated	that	such	solutions	are	possible.3		
	
Another	primary	source	of	bias	is	selection	bias.	If	mortality	rates	are	computed	directly	
from	the	data	(referred	to	as	the	‘naïve’	estimator	by	Gakidou	and	King)7,	the	fact	that	
the	respondent	(usually	a	woman)	is	alive	at	the	time	of	the	survey	will	bias	the	
estimates	downwards.	One	way	of	addressing	this	bias	is	to	exclude	the	respondent	
from	the	denominator	in	the	calculation	of	the	rates.	Trussell	and	Rodriguez	show	that	
under	conditions	where	mortality	does	not	vary	with	the	size	of	the	family	of	siblings,	
known	as	sibship	size,	this	method	generates	estimates	of	mortality	that	are	unbiased.6	
However,	given	a	strong	likelihood	that,	at	least	in	some	cases,	mortality	is	in	fact	
related	to	sibship	size,4,7	there	is	a	need	for	a	method	that	does	not	depend	on	whether	
or	not	this	assumption	holds	true.		
	
A	further	desirable	feature	for	any	method	to	analyse	sibling	history	data	is	that	it	will	
be	able	to	generate	estimates	of	45q15,	the	probability	that,	under	current	mortality	
conditions,	a	15	year	old	will	die	before	reaching	his	or	her	60th	birthday.	45q15	is	a	
standard	indicator	of	premature	adult	mortality	and	widely	used	as	a	summary	
indicator	of	population	health.1,2,8‐12	Because	data	from	the	DHS	are	collected	only	from	
respondents	within	the	age	range	of	15‐49,	computing	an	estimate	of	45q15	presents	a	
challenge,	because	the	number	of	sibling	records	above	age	50	is		fewer,	and	the	data	
become	even	more	sparse	for	periods	of	time	more	distant	from	the	date	of	the	survey.	A	



 

 - 4 - 

variety	of	solutions	have	been	proposed	to	address	this	limitation	in	the	DHS.	Timaeus	&	
Jasseh	imposed	an	age	pattern	on	the	mortality	data	based	on	models	developed	from	
historical	mortality	patterns	along	with	a	model	to	adjust	these	age	patterns	when	
necessary	due	to	the	HIV/AIDS	epidemic.2	Others	have	employed	variations	of	this	
approach.4,9	Although	the	HIV/AIDS	component	of	their	model	allows	deviation	from	
historical	patterns,	questions	remain	about	the	extent	to	which	these	historical	patterns	
represent	contemporary	experience	in	developing	country	populations.13	In	a	different	
approach,	Obermeyer	and	colleagues	estimated	four	age	patterns	of	mortality	by	pooling	
together	the	DHS	sibling	history	data.3	The	benefit	of	this	approach	is	that	the	age	
patterns	are	defined	by	the	data	themselves;	however,	it	is	not	clear	how	generalizable	
the	mortality	patterns	over	time	and	across	all	49	countries	which	have	conducted	a	
DHS	sibling	history	survey	will	be.	This	is	a	subject	of	further	research.		
	
The	purpose	of	this	paper	is	to	refine	existing	methods	that	account	for	selection	bias	to	
generate	plausible	estimates	of	adult	mortality	rates	even	in	the	presence	of	a	
relationship	between	adult	sibship	size	and	mortality.	We	have	implemented	changes	to	
the	method	developed	by	Obermeyer	and	colleagues3,	referred	to	as	the	CSS	method,	
such	that	it	(1)	uses	appropriate	survival	weights	that	account	for	the	study	design	(as	
described	by	Masquelier)4,	and	(2)	recovers	the	mortality	experience	of	the	sibships	that	
are	not	represented	in	the	sampling	frame	either	because	all	siblings	have	died	or	
because	there	are	no	siblings	alive	who	are	eligible	to	participate	in	the	survey	(e.g.	no	
women	between	ages	15‐49	in	the	case	of	DHS).	We	also	present	new	ways	of	adjusting	
for	recall	bias	and	handling	sparse	data	in	survey	designs	where	the	age	range	of	the	
respondents	is	narrower	than	the	age	range	desired	for	estimation.	We	apply	these	
methods	to	sibling	history	data	from	a	number	of	sources	and	compare	the	findings	to	
estimates	derived	from	other	sources	of	adult	mortality	data	where	available.	
	

Methods	

Data:	

In	this	paper,	we	have	used	simulated	data,	data	from	the	DHS,	the	Centers	for	Disease	
Control	Reproductive	Health	Surveys	(CDC‐RHS),	and	data	from	surveys	conducted	in	
four	field	sites	(Bohol,	Philippines;	West	Godavari,	AP,	India;	Shivgarh,	UP,	India;	and	
Pemba,	Tanzania)	by	the	Population	Health	Metrics	Research	Consortium	(PHMRC).14‐16	
In	all	of	these	surveys,	a	sibling	history	(also	known	as	a	maternal	mortality	module)	
collects	information	from	the	respondent	about	each	sibling	born	to	the	same	biological	
mother,	including	their	sex,	age,	whether	alive,	and	if	dead,	the	year	of	death.	Annex	
Table	1	describes	each	of	these	survey	families	and	summarizes	the	characteristics	of	
the	sibling	history	modules	from	the	surveys	within	them.	

Analytic	methods:	

Gakidou‐King	weights	to	adjust	for	selection	bias	
Selection	bias	refers	to	the	underrepresentation	of	high	mortality	sibships	in	the	sample	
population—sibships	with	higher	rates	of	mortality	are	less	likely	to	be	represented	in	
the	survey	because	fewer	of	them	are	likely	to	have	survived	to	be	selected	into	the	
sample.	A	method	to	correct	for	this	underrepresentation,	proposed	by	Gakidou	and	
King,7	incorporates	a	sibship‐level	weight,	 ܹ ൌ /ܤ ܵ,	where	ܤ	is	the	original	sibship	
size	and	 ܵ	is	the	number	of	siblings	in	sibship	݆	who	survive	to	the	time	of	the	survey.	
When	each	observation	in	the	dataset	being	analysed	is	at	the	sibship	level,	this	
Gakidou‐King	(GK)	weight	can	be	used	to	compute	a	weighted	average	of	the	
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proportions	of	siblings	deceased	as	reported	by	each	respondent.	In	the	absence	of	any	
sibships	where	all	siblings	have	died,	this	correction	algebraically	corrects	for	the	
underrepresentation	of	high‐mortality	sibships	in	the	survey	sample.		
	
When	the	dataset	is	expanded	to	the	sibling	level	(i.e.	one	observation	for	each	sibling	as	
opposed	to	sibship),	the	number	of	observations	listed	in	the	dataset	for	each	sibship	
corresponds	to	the	original	sibship	size,	ܤ,	and	so	the	numerator	of	 ܹ	is	already	
accounted	for.	The	resulting	sibling‐level	weight	is	therefore,	 ܹ ൌ 1/ ܵ	for	sibling	݅	in	
sibship	݆.4,9	Since	the	analysis	reported	here	is	carried	out	at	the	sibling	level,	we	use	 ܹ 	
rather	than	 ܹ .	This	improves	on	previous	applications	of	the	method	where	the	
sibship‐level	weight	was	inappropriately	applied	to	data	that	had	been	expanded	to	the	
sibling	level.3		
	
Further,	the	number	of	surviving	siblings	in	the	family	must	also	be	tailored	to	the	
eligibility	criteria	for	respondents	of	the	given	survey.4	In	applying	Gakidou	and	King’s	
elucidation	of	the	survivorship	correction,	Sj/Bj	represents	the	probability	that	a	sibling	
in	sibship	j	survives	and	is	eligible	to	be	selected	in	the	survey.	For	DHS	surveys,	
respondents	must	be	women	between	the	ages	of	15	and	49	and	so	the	 ܵ	in	this	case	
would	be	the	number	of	surviving	women	in	sibship	݆	who	are	between	the	ages	of	15	
and	49	at	the	time	of	the	survey.	In	this	analysis,	the	value	of	 ܵ	has	been	chosen	to	be	
consistent	with	the	eligibility	criteria	of	each	survey.	
	
Zero‐reporter	correction	
Another	important	source	of	selection	bias	is	zero‐reporter	bias.	This	is	the	bias	that	
arises	because	the	sampled	portion	of	the	population,	by	definition,	excludes	sibships	in	
which	there	are	no	siblings	that	are	eligible	to	respond	to	the	survey	and	therefore	
report	on	the	mortality	experience	of	their	siblings.	This	bias	will	be	larger	in	
populations	with	higher	levels	of	mortality.	In	the	case	of	the	DHS,	the	population	not	
represented	in	the	sample	includes	sibships	that	contain	only	men,	or	some	combination	
of	men,	women	outside	of	the	15	to	49	age	range,	and/or	women	who	would	be	within	
this	age	range	but	have	died.	For	the	cases	of	male	mortality	and	for	female	mortality	
outside	the	15	to	49	age	range,	we	assume	that	the	mortality	rates	in	the	omitted	
population	are	the	same	as	those	of	the	siblings	represented	by	respondents	in	the	
sample,	and	so	are	unbiased.	Mortality	rates	within	the	age	range	of	eligible	reporters,	
unless	they	account	for	siblings	of	women	who	would	have	been	eligible	to	report	had	
they	not	died	before	the	time	of	the	survey,	will	be	biased	downward.	Thus,	we	need	to	
further	adjust	the	mortality	rates	of	siblings	that	are	within	the	age	and	sex	eligibility	
criteria	to	account	for	this	bias.	
	
An	updated	correction	for	this	bias	from	previous	methods3	directly	estimates	the	
number	of	sibling	deaths	that	are	missing	from	the	sample	by	age	and	sibship	size	and	
subsequently	adds	these	siblings	to	the	observed	sample	before	calculating	age‐specific	
mortality	risks.	Since	smaller	sibships	are	more	likely	to	be	zero‐reporter	sibships,	we	
begin	by	applying	this	method	to	sibships	with	one	or	two	females	(for	surveys	that	
interview	both	men	and	women,	the	method	is	applied	to	sibships	with	one	or	two	total	
siblings.)	A	detailed	explanation	of	this	correction	is	provided	in	the	Appendix.	
	
Compared	to	the	number	of	missing	women	estimated	for	single‐sister	sibships,	we	
observed	between	3%	and	14%	more	missing	women	after	applying	the	correction	to	
two‐sister	sibships	among	all	surveys.	Thus,	the	relative	contribution	that	would	be	
gained	by	expanding	to	the	three‐sister	case	is	likely	very	small	and	would	not	
contribute	appreciably	to	the	estimated	mortality	rates.	Given	the	required	
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computational	efforts	to	expand	to	the	three‐sister	case,	we	did	not	go	beyond	the	two‐
sister	(or	two‐sibling)	case.		
	
Validation	of	Methods	to	Adjust	for	Survivor	Bias	
In	order	to	validate	and	test	the	performance	of	the	updated	methods	to	correct	for	
selection	bias	as	described	above,	we	used	a	micro‐simulation	approach	to	create	an	
environment	where	true	mortality	rates	are	known.	We	generated	a	dataset	with	
individuals	who	then	are	exposed	over	time	to	age‐specific	risks	of	mortality	and	
fertility.	We	assume	no	migration	in	this	case.		
	
We	modelled	populations	using	data	from	five	countries	in	order	to	simulate	
heterogeneous	mortality	and	fertility	schedules.	We	imposed	the	age‐distribution	of	the	
population	of	Sweden	in	1751	on	the	initial	population	and	applied	constant	single	year	
age‐	and	sex‐specific	probabilities	of	death	and	single	year	age‐specific	fertility	rates	for	
96	years	to	achieve	a	stable	population.	We	then	applied	61	years	of	observed	and	
variable	age‐	and	sex‐	specific	fertility	rates	extracted	from	the	Human	Fertility	
Database	(HFD),	as	well	as	age	and	sex‐	specific	mortality	rates	from	model	life	tables	
developed	in	the	Global	Burden	of	Disease	and	Risk	Factors	2010	study,	for	the	years	
1946	through	2006	from	Canada,	Finland,	Sweden,	Switzerland,	and	the	USA.17,18		
	
We	further	expanded	the	test	environments	to	include	scenarios	where	we	imposed	an	
association	between	sibship	size	and	mortality.	We	accomplished	this	by	multiplying	
single	year	probabilities	of	death	by	a	scalar	that	depended	on	the	sibship	size	of	each	
sibling.	Four	additional	scenarios	were	created:	strong	positive	association,	strong	
negative	association,	and	the	maximum	level	of	positive	and	negative	association	
observed	in	the	DHS.	Strong	positive	association	was	imposed	by	multiplying	the	age‐	
and	sex‐specific	probabilities	of	death	by	half	of	the	sibship	size.	Strong	negative	
association	was	imposed	by	multiplying	the	age‐	and	sex‐specific	probabilities	of	death	
by	the	sibship	size	of	the	index	sibling	subtracted	from	the	maximum	sibship	size	in	the	
population	all	multiplied	by	½.	For	example,	if	the	maximum	sibship	size	in	the	
population	was	16,	the	probability	of	death	for	a	sibling	in	a	sibship	of	size	10	would	be	
multiplied	by	a	factor	of	(16	–	10)	*	½,	or	3.	The	probability	of	death	for	a	sibling	in	a	
sibship	of	size	2	would	be	multiplied	by	a	factor	of	(16	–	2)	*	½,	or	7.	In	this	manner,	
probabilities	of	death	for	siblings	in	smaller	sibships	were	inflated	more	than	
probabilities	of	death	for	siblings	in	larger	sibships.	We	set	the	multiplier	for	the	
maximum	sibship	size	to	be	½.		
	
In	order	to	determine	the	maximum	level	of	association	that	existed	between	sibship	
size	and	mortality	in	the	DHS,	we	first	calculated	35q15	for	males	by	sibship	size	within	
each	survey	with	only	female	respondents.	After	dropping	outlying	sibship	sizes	on	a	
per‐survey	basis,	we	ran	a	regression	that	relates	the	log	difference	between	sibship‐
size‐specific	35q15	and	overall	35q15	to	sibship	size	as	a	categorical	variable.	We	then	
exponentiated	the	regression	coefficients	and	smoothed	them	by	regressing	on	sibship	
size	as	a	continuous	variable.	The	resulting	regression	equation	gives	us	the	linear	
formula	to	find	the	sibship‐specific	scalars	that	we	multiply	to	the	overall	age‐	and	sex‐
specific	probability	of	death	to	get	the	sibship‐size‐specific	probability	of	death.	Slopes	
of	the	scalars	by	sibsize	are	‐0.084	and	0.25	for	maximum	negative	and	positive	
associations	found	in	DHS	respectively.	The	multipliers	can	be	found	in	Table	3.	We	
chose	35q15	as	our	summary	measure	because	it	is	less	influenced	by	smaller	numbers	
of	respondents	at	the	older	ages	than	is	45q15,	and	we	chose	to	look	at	males	because	
they	are	not	affected	by	zero‐reporter	bias.		
	
In	all	four	scenarios,	after	multiplying	the	age‐	and	sex‐specific	probability	of	death	by	
the	sibship‐size‐specific	scalar,	we	multiplied	these	values	by	the	ratio	of	the	age‐	and	
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sex‐specific	mean	of	the	original	probability	of	death	to	the	age‐	and	sex‐specific	mean	of	
the	association‐adjusted	probability	of	death.	This	serves	to	recapture	the	overall	levels	
of	input	mortality	to	ensure	we	are	not	inflating/deflating	mortality	rates.	
	
In	total,	we	generated	30	unique	populations	for	each	of	the	five	scenarios	depicting	
levels	of	association	between	sibship	size	and	mortality	risk.	Within	each	of	these	150	
modelled	populations,	we	simulated	100	surveys,	sampling	approximately	10,000	
respondents	in	the	sampling	scheme	of	the	DHS,	where	women	between	the	ages	of	15	
and	49	are	eligible	to	report,	as	well	as	in	the	sampling	scheme	of	the	PHMRC,	where	
both	men	and	women	aged	15	or	older	are	eligible	to	respond.	Assuming	no	
misreporting,	we	gathered	data	from	respondents,	replicating	observations	in	cases	
where	more	than	one	sibling	from	a	sibship	was	selected	as	a	respondent,	and	dropping	
sibships	in	which	no	one	was	selected.	We	then	estimated	age‐specific	mortality	rates	by	
applying	our	methods	to	the	survey	data	to	assess	how	the	results	compared	to	the	true	
mortality	rates	calculated	from	the	entire	simulated	population.	Uncertainty	intervals	
were	generated	for	each	scenario	by	pooling	estimates	from	the	100	surveys	of	each	of	
the	30	populations	for	each	scenario	and	calculating	the	2.5th	and	97.5th	percentiles	from	
these	3,000	estimates.	
	
Addressing	the	issue	of	sparse	data	to	generate	estimates	of	45q15	
In	DHS‐type	surveys,	which	limit	the	ages	of	respondents	to	between	15	and	49,	the	
estimates	of	mortality	in	the	age	range	from	50‐59	are	derived	solely	from	the	
experience	of	older	siblings	of	respondents.	Therefore,	the	numbers	of	siblings	and	
sibling	deaths	in	these	age	groups	is	less	than	in	age	groups	that	include	respondents.	
The	data	become	even	more	sparse	further	back	in	time,	since	the	cohorts	of	
respondents	and	their	siblings	cover	an	even	younger	age	range	in	the	past.	This	can	
generate	small	numbers	problems	if	the	data	are	too	sparse.	To	address	this	issue,	we	
used	the	following	logistic	regression	model:		
	

ሺݐ݈݅݃ ܻ௧ ൌ 1ሻ ൌ ߚ  ܫߚ 	ܫߚ௧  	ߝ
	
where	Yat	is	an	indicator	of	survival	or	death	in	age	group	a	at	time	t,	Ia	is	a	set	of	
indicators	for	each	five	year	age	group,	15‐19,	20‐24,	…	,	55‐59,	and	It	is	a	set	of	
indicators	for	each	five	year	period	prior	to	the	year	of	the	survey.	In	using	this	model	
we	are	assuming	a	constant	age	pattern	over	the	fifteen	years	prior	to	the	survey,	
effectively	borrowing	strength	across	all	periods.	In	addition,	we	analyse	each	survey	
separately,	which	means	that	the	level	and	patterns	observed	in	the	underlying	data	are	
preserved	to	a	greater	extent	than	would	be	the	case	if	age	patterns	were	imposed	or	
data	pooled	across	surveys	and	countries.		
	
The	resulting	age	patterns	may	still	be	“noisy”,	especially	in	surveys	with	a	smaller	
sample	size	and/or	lower	mortality.	We	therefore	conducted	a	sensitivity	analysis	to	
assess	how	the	quality	of	the	age	pattern	affects	the	level	of	45q15.	To	do	this,	we	
smoothed	the	age	patterns	obtained	from	the	logistic	regression	models	using	kernel‐
weighted	local	polynomial	smoothing	and	compared	the	resulting	estimates	of	45q15	to	
the	45q15s	generated	from	the	age	patterns	as	directly	observed	from	the	regression	
results.	In	addition,	we	recognize	that	the	assumption	of	a	constant	age	pattern	over	a	
fifteen	year	period	is	tenuous	in	the	context	of	major	epidemiologic	change	such	as	that	
brought	about	by	HIV.	To	determine	how	assuming	a	constant	age	pattern	affects	
estimates	of	45q15,	we	performed	an	additional	sensitivity	test	by	selecting	all	surveys	
from	Sub‐Saharan	Africa	that	showed	a	monotonic	increase	in	adult	mortality	consistent	
with	what	we	would	expect	in	a	setting	with	a	high	prevalence	of	HIV.	We	compared	
estimates	of	45q15	obtained	by	separately	analysing	data	from	the	five	year	period	
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immediately	prior	to	the	survey	(the	period	where	we	would	expect	a	clear	HIV‐related	
age	pattern)	to	estimates	of	45q15	obtained	by	pooling	data	from	this	period	with	the	
two	periods	5‐9	and	10‐14	years	prior	to	the	survey	(when	HIV	prevalence	was	much	
lower)	to	see	how	much	the	assumption	of	a	constant	age	pattern	over	time	affects	the	
level	of	the	resulting	summary‐level	indicator	of	interest,	namely	45q15.		
	
Recall	bias	adjustment	
To	quantify	and	adjust	for	recall	bias	in	the	sibling	history	data,	we	combined	the	
estimates	of	45q15	from	all	women’s	surveys,	and	aligned	the	estimates	for	all	periods	
where	they	overlapped.	Since	we	estimated	mortality	levels	for	three	five‐year	periods	
prior	to	the	survey	year,	estimates	overlapped	when	at	least	two	surveys	were	carried	
out	in	the	same	country	less	than	15	years	apart.	For	example,	analysis	of	the	surveys	in	
Burkina	Faso	yields	two	estimates	for	the	five‐year	period	1993‐1997;	one	estimate	is	
generated	from	the	2003	survey	and	the	other	estimate	is	from	the	1998	survey.	There	
were	298	unique	pairs	of	overlapping	estimates;	152	for	females	and	146	for	males.	The	
discrepancy	by	sex	is	due	to	the	fact	that	the	CDC‐RHS	surveys	only	collected	
information	about	sisters	of	respondents,	so	male	mortality	could	not	be	ascertained	
from	this	survey	family.		
	
The	estimates	of	mortality	for	each	five‐year	period	were	assigned	to	the	midpoint	of	
the	period,	and	the	period	of	recall	for	each	estimate	was	calculated	by	subtracting	from	
the	year	that	the	survey	was	conducted.	In	the	Burkina	Faso	example,	the	average	period	
of	recall	for	the	estimate	from	the	2003	survey	would	be	7.5	years	while	the	average	
period	of	recall	for	the	estimate	from	the	1998	survey	would	be	just	2.5	years.	Thus	the	
difference	in	the	period	of	recall	between	the	estimates	from	these	two	surveys	was	5	
years.	We	calculated	this	difference	in	years	of	recall	between	each	pair	of	points	as	well	
as	the	magnitude	of	the	difference	between	the	two	estimates	of	45q15	and	
implemented	a	linear	regression	model	separately	by	sex	of	sibling	to	quantify	the	
relationship	between	years	of	recall	and	the	level	of	mortality.	The	coefficient	on	recall	
period	represents	the	effect	of	recall	bias	and	was	then	used	to	adjust	the	estimates	
accordingly.	
	

Comparison	to	other	sources	of	mortality	
We	compared	the	estimates	of	45q15	generated	from	applying	the	methods	outlined	
above	to	all	surveys	in	countries	or	settings	for	which	alternate,	independent	sources	of	
adult	mortality	data	were	available.	These	sources	included	vital	registration	data	
(evaluated	and	adjusted	for	incompleteness	if	necessary),21	and	in	the	case	of	the	data	
from	the	PHMRC	sites,	the	sources	included	estimates	from	a	dual‐census	comparison	
and	identification	of	deaths	through	tracing	(Pemba,	Shivgarh	and	West	Godavari)	and	a	
capture‐recapture	analysis	of	three	systems	for	recording	deaths	(Bohol).22	
	

Results	

Validation	of	survival	bias	correction	in	simulation	environments	
The	population	distribution	by	age	and	sex	for	the	simulated	populations	is	shown	in	
Figure	1.		
	
Figure	2	shows	the	application	of	the	components	of	the	survival	bias	correction	to	a	
sibling	history	survey	in	each	association	population.	When	both	the	GK	weights	and	the	
zero‐reporter	corrections	are	applied,	the	method	for	adjusting	for	survival	bias	
recovers	the	underlying	true	rates	better	than	applying	each	component	separately.		
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Table	1	presents	the	estimates	of	relative	error	of	45q15	with	associated	uncertainty	
intervals	for	each	of	the	scenarios	of	association	between	sibship	size	and	mortality	for	
the	DHS‐	and	PHMRC‐type	sampling	schemes.	Table	2	presents	mean	residuals	with	
standard	deviations	in	estimated	45q15	among	each	simulation	scenario	and	the	
differences	between	the	Corrected	Sibling	Survival	method	and	the	Trussell‐Rodriguez	
method.	
	
In	the	DHS‐type	sampling	scheme,	with	no	association	between	sibship	size	and	
mortality,	estimates	are	unbiased,	with	the	relative	error	of	estimated	45q15	differing	
by	‐0.3%	(95%UI:	‐9.7%,	8.8%)	for	females	and	‐1.4%	(‐7.7%,	5.0%)	for	males.	Under	
strong	negative	association,	the	estimates	are	biased	downwards	by	‐9.1%	(‐17.4%,	‐
0.7%)	for	females	and	‐8.2%	(‐14.1%,	‐2.1%)	for	males.	Under	strong	positive	
association,	the	estimates	are	biased	upwards,	by	11.5%	(2.7%,	22.0%)	for	females	and	
14.7%	(8.1%,	21.7%)	for	males.	The	bias	in	scenarios	modelled	according	to	the	level	of	
association	observed	in	the	DHS	is	markedly	less;	the	estimates	are	biased	downward	
for	the	maximum	negative	association	by	‐3.4%	(‐12.1%,	5.3%)	for	females	and	‐4.4%	(‐
10.3%,	1.8%)	for	males,	while	the	estimates	for	the	maximum	positive	association	
observed	in	the	DHS	is	biased	upward	by	7.2%	(‐1.5%,	16.9%)	for	females	and	8.4%	
(2.1%,	14.5%)	for	males.	The	PHMRC‐type	sampling	scheme	seems	to	display	
downward	biases	over	each	of	the	association	scenarios,	but	the	corresponding	
uncertainty	intervals	are	much	wider	than	those	in	the	DHS	sampling	scheme.	
	
In	comparing	our	method	to	the	Trussell‐Rodriguez	method,	mean	residuals	of	the	
45q15	estimate	are	comparable	for	no	association	between	sibship	size	and	mortality	
(female:	0.0002	vs.	‐0.0008;	male:	0.0015	vs.	0.0015),	maximum	DHS	negative	
association	(female:	0.002	vs.	0.002;	male:	0.005	vs.	0.006),	and	strong	negative	
association	(female:	0.005	vs.	0.009;	male:	0.007	vs.	0.012).	The	method	proposed	in	this	
article	performs	better	for	the	maximum	DHS	positive	association	(female:	‐0.004	vs.	‐
0.008;	male:	‐0.009	vs.	‐0.013)	and	strong	positive	association	(female:	‐0.007	vs.	‐0.012;	
male:	‐0.016	vs.	‐0.022).	For	the	PHMRC	sampling	scheme,	results	are	more	sporadic	
and	overall	comparable.	
	
Application	of	the	methods	to	sibling	history	surveys	and	comparison	to	other	sources	of	
mortality	data	
	
For	males,	the	all‐country	coefficient	on	recall	was	0.00429,	meaning	that	the	level	of	
45q15	is	expected	to	decrease	by	this	amount	for	each	additional	year	prior	to	the	
survey.	For	females,	the	annual	decrease	was	lower	at	0.00440.	We	used	these	
coefficients	to	adjust	estimates	to	account	for	recall	bias	in	addition	to	selection	bias	and	
zero‐reporter	bias.	The	impact	of	these	three	components	of	our	method	is	illustrated	
for	six	surveys	in	Figure	3.	The	GK	weights	raise	the	estimated	45q15	by	5.9%;	the	
addition	of	the	zero‐reporter	siblings	raise	the	estimated	45q15	by	9.5%;	and	the	
addition	of	the	recall	bias	correction	further	raise	the	estimates	by	16.7%,	on	average.	
	
Results	of	the	application	of	our	methods	to	sibling	history	surveys	at	the	country‐level	
are	shown	in	Appendix	Figure	1,	along	with	the	estimates	of	45q15	from	other	available	
sources	for	comparison.	While	the	estimates	from	the	sibling	histories	can	be	fairly	
different	compared	to	those	derived	from	other	data	sources,	an	overall	comparison	
(Figure	4)	suggests	an	average	consistency	(in	other	words,	there	is	definitely	“noise”	in	
the	relationship	but	no	apparent	bias).		
	
At	a	more	detailed	level,	we	observe	as	expected	that	analysing	individual	surveys	can	
result	in	particularly	erratic	estimates	of	mortality	by	age.	However,	after	smoothing	the	
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age	patterns	for	all	survey‐periods,	the	mean	absolute	change	in	45q15	was	1.6%	
(range:	0.0%,	12%),	indicating	a	robust	estimation	of	45q15,	despite	“noisy”	age	
patterns.	Similarly,	the	effect	of	assuming	a	constant	age	pattern	over	time	among	
countries	with	steep	increases	in	HIV	prevalence	versus	using	the	pattern	observed	in	
the	raw	data	also	yields	robust	estimates	of	45q15	(a	comparison	of	45q15	using	both	
approaches	shows	a	mean	absolute	change	of	2.4%	with	a	range	from	0.5%	to	6.3%).	
	

Discussion	

We	have	presented	a	method	which	can	be	applied	to	sibling	history	data	from	
retrospective	surveys	to	yield	estimates	of	adult	mortality	that	are	broadly	consistent	
with	other,	generally	more	reliable	sources.	In	particular,	our	method	appears	to	
adequately	address	the	problem	of	selection	bias	as	demonstrated	in	a	variety	of	micro‐
simulation	environments.	In	scenarios	of	extreme	association	between	sibship	size	and	
mortality,	the	method	produces	point	estimates	that	are	biased,	but	under	more	
plausible	levels	of	association,	the	accompanying	uncertainty	intervals	include	the	
comparator	value	(i.e.	the	true	level	of	adult	mortality).		
	
The	biases	which	are	evident	when	strong	associations	between	sibship	size	and	
mortality	risk	are	imposed	are	likely	due	to	the	fact	that	the	probability	of	being	a	zero‐
reporter	sibship	depends	in	part	on	the	size	of	the	sibship.	Regardless	of	mortality,	
smaller	sibships	are	more	likely	to	be	completely	missed	in	our	sample;	therefore	their	
mortality	experience	will	be	underrepresented.	In	the	case	of	positive	association	
between	sibship	size	and	mortality	risk,	this	results	in	an	overestimation	of	mortality	
because	we	are	differentially	missing	smaller	sibships	which,	by	definition,	experience	a	
lower	risk	of	mortality.	In	the	case	of	negative	association,	the	resulting	estimate	is	
conversely	downwardly	biased.	While	our	method	does	not	account	for	this	aspect	of	
zero‐reporter	bias,	our	exploration	of	the	resulting	bias	when	we	imposed	the	maximum	
levels	of	positive	and	negative	association	observed	in	the	DHS	showed	that	this	
association	only	leads	to	significant	bias	in	our	estimates	of	45q15	for	the	maximum	
positive	association	when	using	the	DHS‐type	sampling	scheme.	The	maximum	positive	
association	is	very	extreme	as	compared	to	the	rest	of	the	DHS	surveys	analysed,	and	
using	associations	more	in	the	normal	range	of	the	surveys	does	not	lead	to	significant	
bias.	With	the	PHMRC‐type	sampling	scheme,	we	get	uncertainty	intervals	that	are	very	
wide,	making	any	inference	difficult.	To	a	certain	degree,	this	is	due	to	the	much	wider	
range	of	ages	sampled—any	individual	over	age	15—which	ends	up	providing	less	
information	on	the	15‐60	age	group	than	the	DHS‐type	sampling	scheme,	thus	we	have	
more	uncertainty	for	45q15.	This	is	especially	true	for	populations	with	older	age	
distributions	such	as	those	in	our	micro‐simulations.		
The	comparison	of	our	estimates	with	estimates	derived	from	independent	sources	of	
mortality	data	suggests	an	unclear	relationship	between	different	sources,	but	no	
obvious	indication	that	the	sibling	estimates	are	biased.	Given	the	amount	of	uncertainty	
in	both	sources	(the	uncertainty	intervals	in	the	sibling	history	estimates	are	generally	
quite	wide	as	shown	in	the	graphs	in	Appendix	Figure	1,	and	adjusting	vital	registration	
data	for	incompleteness	can	add	substantial	uncertainty	to	the	comparison	estimates),21	
this	“noisiness”	is	not	surprising.		
	
One	major	limitation	of	this	analysis	is	the	estimation	of	the	average	recall	bias	across	all	
surveys	and	the	use	of	this	average	effect	in	calculating	levels	and	trends	in	45q15.	
Because	of	the	scarcity	of	countries	in	which	multiple	surveys	have	been	conducted	
within	15	years	of	each	other,	using	the	average	recall	bias	estimate	is	necessary.	As	
more	countries	conduct	more	surveys	that	include	sibling	survival	modules,	it	will	
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become	possible	to	apply	this	method	on	a	regional	and	eventually	perhaps	even	
country‐by‐country	basis.	More	specific	recall	bias	parameter	values	can	then	be	used	to	
generate	estimated	levels	of	adult	mortality.		
	
An	additional	limitation	of	this	method	is	the	inability	to	rely	on	the	estimated	age	
patterns	of	mortality	for	further	inference;	however	as	we	have	shown,	the	
implausibility	of	the	age	patterns	does	not	appreciably	affect	the	summary	indicator	of	
45q15.	The	assumption	of	a	constant	age	pattern	over	time	also	is	not	likely;	however,	
this	assumption	has	only	a	small	effect	on	the	summary	indicator	of	interest,	namely	
45q15.	
		
These	limitations	need	to	be	understood,	but	they	are,	in	our	view,	by	no	means	the	
reason	for	not	utilizing	sibling	history	technique.	Rather,	the	methods	presented	here	
now	permit	improved	estimation	of	adult	mortality	in	a	number	of	countries	where	
information	gaps	exist	because	of	the	lack	of	adequate	systems	to	register	deaths.	As	
more	countries	collect	sibling	survival	data,	it	will	be	possible	to	explore	the	contextual,	
linguistic	and	other	cultural	factors	that	might	account	for	variability	in	recall	bias.	This	
knowledge	could	help	to	guide	further	improvements	in	survey	instruments	for	
recalling	sibling	deaths.		
	
Measuring	adult	mortality	more	reliably	in	poor	populations	is	becoming	an	increasingly	
urgent	public	health	priority	as	global	health	attention	shifts	to	include	an	emphasis	on	
prevention	and	control	of	non‐communicable	diseases.	This	ought	to	be	accompanied	by	
growing	recognition	of	the	potential	utility	of	sibling	history	data	for	public	health	
monitoring.	
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Tables	

Table	1:	Relative	error	in	estimated	45q15	among	various	simulation	scenarios	

	 	
Mean	Relative	error	in		

estimated	45q15	with	95%	UI	(%)	
Sampling	
Scheme	

Level	of	Association	Between	
Sibship	Size	and	45q15	

Female Male	

DHS	 No	association	 ‐0.3 [‐9.7,8.8] ‐1.4	[‐7.7,5.0]	
DHS	 Max	DHS	Negative	association	 ‐3.4	[‐12.1,5.3] ‐4.4	[‐10.3,1.8]	
DHS	 Max	DHS	Positive	association	 7.2 [‐1.5,16.9] 8.4	[2.1,14.5]	
DHS	 Strong	negative	association	 ‐9.1 [‐17.4,‐0.7] ‐8.2	[‐14.1,‐2.1]	
DHS	 Strong	positive	association	 11.5 [2.7,22.0] 14.7	[8.1,21.7]	

PHMRC	 No	association	 ‐2.2 [‐37.3,41.8] ‐8.1	[‐30.1,14.7]	
PHMRC	 Max	DHS	Negative	association	 ‐0.9 [‐33.5,40.8] ‐5.0	[‐25.1,17.3]	
PHMRC	 Max	DHS	Positive	association	 ‐3.2 [‐37.6,41.3] ‐9.5	[‐31.5,14.4]	
PHMRC	 Strong	negative	association	 ‐0.3 [‐29.6,38.5] ‐3.9	[‐24.6,18.0]	
PHMRC	 Strong	positive	association	 ‐0.3 [‐9.7,8.8] ‐1.4	[‐7.7,5.0]	
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Table	2:	Mean	(standard	deviation)	of	residuals	in	estimated	45q15	among	various	
simulation	scenarios	and	the	differences	between	the	Corrected	Sibling	Survival	
method	and	the	Trussell‐Rodriguez	method	

	

	

	 	

	 	 Mean	residual	in	estimated	45q15with	standard	deviation
	 	 CSS Trussell‐Rodriguez

Sampling	
Scheme	

Level	of	Association	Between	
Sibship	Size	and	45q15	

Female Male Female	 Male

DHS	 No	association	 0.0002 (0.003) 0.0015	(0.003) ‐0.0008	(0.003)	 0.0015 (0.004)

DHS	 Max	DHS	Negative	association	 0.002	(0.003) 0.005 (0.003) 0.002	(.003)	 0.006 (0.004)

DHS	 Max	DHS	Positive	association	 ‐0.004	(0.003) ‐0.009	(0.003) ‐0.008	(.003)	 ‐0.013 (0.004)

DHS	 Strong	negative	association	 0.005	(0.003) 0.009 (0.003) 0.007	(0.003)	 0.012 (0.003)

DHS	 Strong	positive	association	 ‐0.007 (0.003) ‐0.016 (0.004) ‐0.012	(0.004)	 ‐0.022 (0.004)

PHMRC	 No	association	 0.0013	(0.011) 0.0081	(0.013) ‐0.0003	(0.008)	 ‐0.0001	(0.011)

PHMRC	 Max	DHS	Negative	association	 0.001	(0.012) 0.009 (0.012) 0.003	(0.008)	 0.005 (0.010)

PHMRC	 Max	DHS	Positive	association	 0.001 (0.011) 0.005	(0.012) ‐0.008	(0.008)	 ‐0.014 (0.011)

PHMRC	 Strong	negative	association	 0.002 (0.012) 0.010 (0.013) 0.007	(0.008)	 0.011	(0.010)

PHMRC	 Strong	positive	association	 0.0002 (0.010) 0.004	(0.012) ‐0.012	(0.009)	 ‐0.022 (0.011)
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Table	3:	Multipliers	for	the	DHS	maximum	positive	and	maximum	negative	
association	between	sibship	size	and	mortality.	In	the	mortality	and	sibship	size	
association	equation,	x	=	sibsize.	
	

	 Association	multiplier
Sibship	Size	 Maximum	Negative

1.54	–	0.084x	
Maximum	Positive
0.499	+	0.25x	

1	 1.456	 0.749	
2	 1.372	 0.999	
3	 1.288	 1.249	
4	 1.204	 1.499	
5	 1.120	 1.749	
6	 1.036	 1.999	
7	 0.952	 2.249	
8	 0.868	 2.499	
9	 0.784	 2.749	
10	 0.700	 2.999	
11	 0.616	 3.249	
12	 0.532	 3.499	
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Figures	

Figure	1:	Population	distributions	by	age	and	sex	for	the	simulation	environments	with	
(a)	zero	association	between	mortality	and	sibship	size,	(b)	the	maximum	DHS	negative	
association,	(c)	the	maximum	DHS	positive	association,	(d)	strong	negative	association,	
and	(e)	strong	positive	association.	
	
Figure	2:	Age‐specific	mortality	rates	for	the	five	years	prior	to	the	survey.	Step‐by‐step	
results	when	applying	the	DHS	sampling	strategy	to	low	mortality	simulated	population,	
with	(a)	zero	association	between	sibship	size	and	mortality,	(b)	the	maximum	DHS	
negative	association,	(c)	the	maximum	DHS	positive	association,	(d)	strong	negative	
association,	and	(e)	strong	positive	association.	
	
Figure	3:	A	step‐by‐step	look	at	each	of	the	adjustments	in	the	Sibling	Survival	Method	
for	a	selection	of	DHS:	Cambodia	2000,	Ethiopia	2005,	Haiti	2005,	Malawi	2000,	Niger	
1992,	and	Philippines	1998.	
	
Figure	4:	Comparison	of	estimates	of	45q15	generated	from	sibling	history	surveys	to	
estimates	of	45q15	from	other	independent	sources	of	adult	mortality	data.		
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Figure	1	
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(c) 		
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(e) 		
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Figure	2	
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(c) 		
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Figure	3	
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Appendices:	
	

Appendix	Table	1	

Demographic	and	Health	
Surveys	
Number	of	countries:	49	

Number	of	surveys:	95	

Respondents:	Women,	age	15‐49	(seven	surveys	also	ask	a	smaller	sample	of	males	about	their	siblings)	

Nationally	representative	 	
		 Country	 Year Respondents Siblings	reported Sibling	deaths	

reported	
		 Benin	 1996	 5,488	 36,367	 7,904	
		 Benin	 2006	 17,358	 114,112	 18,279	
		 Bolivia	 1993	 8,603	 51,703	 7,842	
		 Bolivia	 2003	 17,251	 112,001	 17,541	
		 Bolivia	 2008	 16,939	 103,618	 14,687	
		 Brazil	 1996	 2,949	 87,522	 11,519	
		 Brazil	 1996	 12,577	 87,522	 11,519	
		 Burkina	Faso	 1998	 6,427	 40,885	 7,817	
		 Burkina	Faso	 2003	 12,230	 78,494	 12,908	
		 Cambodia	 2000	 15,351	 95,593	 16,292	
		 Cambodia	 2005	 16,516	 106,595	 18,708	
		 Cameroon	 1998	 5,490	 38,420	 6,895	
		 Cameroon	 2004	 10,656	 76,151	 14,403	
		 Central	African	Republic	 1994	 5,884	 36,402	 5,814	
		 Chad	 1996	 7,450	 48,547	 9,727	
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		 Chad	 2004	 6,085	 41,932	 8,835	

		
Country	 Year Respondents Siblings	reported Sibling	deaths	

reported	

		 Congo	 2005	 7,051	 47,843	 7,665	
		 Congo,	Dem.	Rep.	 2007	 9,472	 67,876	 12,530	
		 Côte	d'Ivoire	 1994	 8,099	 52,487	 7,852	
		 Côte	d'Ivoire	 2005	 4,891	 33,103	 5,936	
		 Dominican	Republic	 2002	 11,384	 74,643	 6,814	
		 Dominican	Republic	 2007	 27,162	 163,193	 14,336	
		 Eritrea	 1995	 1,114	 32,724	 6,594	
		 Eritrea	 1995	 5,054	 32,724	 6,594	
		 Ethiopia	 2000	 15,347	 107,524	 25,669	
		 Ethiopia	 2005	 13,739	 94,664	 17,661	
		 Gabon	 2000	 6,183	 42,410	 6,020	
		 Ghana	 2007	 10,370	 63,728	 7,193	
		 Guatemala	 1995	 12,375	 84,202	 11,990	
		 Guinea	 1999	 6,753	 39,198	 7,684	
		 Guinea	 2005	 7,619	 48,978	 11,038	
		 Haiti	 2000	 10,159	 68,682	 14,601	
		 Haiti	 2005	 10,523	 71,827	 14,541	
		 Indonesia	 1994	 28,168	 162,221	 22,526	
		 Indonesia	 1997	 28,810	 157,744	 15,948	
		 Indonesia	 2002	 28,051	 157,540	 14,081	
		 Indonesia	 2007	 32,895	 176,733	 17,115	
		 Jordan	 1997	 5,546	 51,077	 5,836	
		 Kenya	 1998	 7,872	 57,405	 6,192	
		 Kenya	 2003	 8,177	 60,066	 7,698	
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		 Kenya	 2008	 8,444	 58,248	 5,897	
		 Lesotho	 2004	 6,902	 40,632	 6,633	

		
Country	 Year Respondents Siblings	reported Sibling	deaths	

reported	

		 Lesotho	 2009	 7,246	 40,312	 6,796	
		 Liberia	 2006	 6,658	 37,887	 3,901	
		 Madagascar	 1992	 6,260	 46,494	 6,920	
		 Madagascar	 1997	 7,060	 51,649	 6,028	
		 Madagascar	 2003	 7,630	 51,165	 3,989	
		 Madagascar	 2008	 17,375	 121,092	 14,114	
		 Malawi	 1992	 1,151	 35,018	 9,190	
		 Malawi	 1992	 4,849	 35,018	 9,190	
		 Malawi	 2000	 13,220	 92,513	 22,280	
		 Malawi	 2004	 11,290	 74,080	 14,047	
		 Mali	 1995	 9,704	 63,045	 13,897	
		 Mali	 2001	 12,815	 83,365	 16,140	
		 Mali	 2006	 14,118	 100,149	 22,193	
		 Mauritania	 2000	 7,728	 49,563	 6,242	
		 Morocco	 1992	 9,256	 69,757	 10,665	
		 Morocco	 2003	 16,602	 124,923	 18,033	
		 Mozambique	 1997	 8,702	 50,149	 8,493	
		 Mozambique	 2003	 11,923	 74,937	 13,291	
		 Namibia	 1992	 5,421	 36,605	 4,231	
		 Namibia	 2000	 6,752	 44,527	 4,830	
		 Namibia	 2006	 9,499	 60,920	 7,622	
		 Nepal	 1996	 8,429	 52,134	 11,474	
		 Nepal	 2006	 10,639	 64,475	 11,356	
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		 Niger	 1992	 6,503	 43,819	 10,285	
		 Niger	 2006	 8,935	 64,183	 13,526	
		 Nigeria	 2008	 33,385	 213,304	 30,322	

		
Country	 Year Respondents Siblings	reported Sibling	deaths	

reported	

		 Peru	 1991	 15,882	 99,447	 10,480	
		 Peru	 1996	 28,951	 197,378	 28,873	
		 Peru	 2000	 27,774	 183,986	 25,290	
		 Peru	 2003	 11,441	 73,794	 8,564	
		 Peru	 2004	 40,552	 255,728	 33,811	
		 Philippines	 1993	 15,029	 102,938	 8,132	
		 Philippines	 1998	 13,978	 93,976	 8,479	
		 Rwanda	 2000	 10,415	 75,804	 19,432	
		 Rwanda	 2005	 11,184	 83,711	 22,590	
		 Sao	Tome	and	Principe	 2008	 2,615	 19,326	 2,533	
		 Senegal	 1992	 6,310	 41,913	 8,160	
		 Senegal	 2005	 14,370	 100,964	 15,295	
		 Sierra	Leone	 2008	 6,612	 38,903	 6,137	
		 South	Africa	 1998	 11,718	 63,008	 6,551	
		 Sudan	 1989	 5,860	 42,570	 6,855	
		 Swaziland	 2006	 4,810	 30,489	 3,984	
		 Tanzania	 1996	 8,118	 55,931	 8,539	
		 Tanzania	 2004	 10,190	 74,273	 13,175	
		 Tanzania	 2009	 10,139	 66,974	 8,947	
		 Timor‐Leste	 2009	 13,137	 76,631	 10,147	
		 Togo	 1998	 8,569	 58,193	 11,110	
		 Uganda	 1995	 1,996	 51,196	 9,621	
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		 Uganda	 1995	 7,068	 51,196	 9,621	
		 Uganda	 2000	 7,240	 54,871	 11,046	
		 Uganda	 2006	 8,518	 66,655	 15,165	
		 Zambia	 1996	 8,021	 59,231	 10,075	

		
Country	 Year Respondents Siblings	reported Sibling	deaths	

reported	

		 Zambia	 2001	 7,658	 55,477	 9,859	
		 Zambia	 2007	 7,141	 48,382	 7,695	
		 Zimbabwe	 1994	 2,141	 44,649	 5,780	
		 Zimbabwe	 1994	 6,128	 44,649	 5,780	
		 Zimbabwe	 1999	 5,907	 40,401	 4,560	
		 Zimbabwe	 2005	 7,175	 55,810	 6,897	
		 Zimbabwe	 2005	 8,661	 55,810	 6,897	
	
	
CDC	Reproductive	Health	
Surveys	 		 		 		 		
Number	of	countries	with	sibling	history	survey:	5 		
Number	of	surveys:	8	 		
Respondents:	Women,	age	15‐49	 		
Nationally	representative	 		 		 		 		

		
Country	 Year Respondents Siblings	reported Sibling	deaths	

reported	

		 Ecuador	 1994	 12,352	 76,444	 6,639	
		 Ecuador	 2004	 9,521	 50,098	 508	
		 El	Salvador	 1993	 5,417	 29,713	 1,154	
		 El	Salvador	 1998	 11,164	 58,893	 1,128	
		 El	Salvador	 2003	 9,211	 47,975	 578	
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		 Honduras	 1996	 6,953	 44,625	 3,000	
		 Nicaragua	 1992	 6,446	 61,439	 2,323	
		 Paraguay	 1995	 5,837	 34,687	 2,441	
	
	 	 	

Population	Health	Metrics	Research	Consortium	Surveys	 		 		
Number	of	sites	with	sibling	history	survey:	4 		
Number	of	surveys:	6	 		
Respondents:	Men	and	women,	age	15+	 		
Not	nationally	representative	 		 		 		 		

		
Country	 Year Respondents Siblings	reported Sibling	deaths	

reported	

		 Andhra	Pradesh,	India	 2007‐2009	 72,299	 248,215	 69,404	
		 Uttar	Pradesh,	India	 2008‐2009	 28,373	 112,281	 25,792	
		 Bohol,	Philippines	 2007‐2008	 28,370	 161,411	 28,387	
		 Pemba	Island,	Tanzania	 2007‐2008	 69,083	 420,097	 58,347	
		 Andhra	Pradesh,	India	 2010	 3,943	 14,639	 4,801	
		 Bohol,	Philippines	 2010	 5,027	 29,271	 4,950	
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Appendix	Figure	1:	Estimates	of	45q15	from	sibling	history	surveys	as	compared	
to	estimates	from	other	independent	sources	of	adult	mortality,	for	each	country	
where	both	sources	exist.	
	
Estimates	for	Reproductive	Health	Surveys:	
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Estimates	for	Demographic	Health	Surveys:	
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Appendix	

Expanded	zero‐reporter	correction	explanation	
We	use	the	following	equations	to	directly	estimate	the	number	of	missing	
single‐sister	sibships	due	to	zero‐reporter	bias	within	each	5‐year	age	group.	
	
	

௦ܭ
ଵ ൌ ௧௨ଵܭ ∗ ሺ1െݍ

ଵሻ	 	 	 	 (1)	
	
௦௦ܭ
ଵ ൌ ௧௨ଵܭ ∗ ݍ

ଵ	 	 	 	 	 (2)	
	

∴ ௦௦ܭ	
ଵ ൌ ್ೞ

భ

ଵିೌబ
భ ∗ ݍ

ଵ	 	 	 	 (3)	

	
In	words,	equation	(1)	says	that	the	number	of	sibships	with	one	sister	that	are	
observed	in	the	sampled	population,	ܭ௦

ଵ ,	is	equal	to	the	true	number	of	sibships	
with	one	sister	in	the	population,	ܭ௧௨ଵ ,	multiplied	by	the	probability	that	the	
sister	has	survived	to	the	time	of	the	survey,	where	her	cumulative	probability	of	
death	is	denoted	as	ܽݍ

ଵ	for	her	5‐year	age	group	ܽ.	Equation	(2)	says	that	the	
number	of	sibships	with	one	sister	that	are	not	represented	in	the	sampled	
population	due	to	zero‐reporter	bias,	ܭ௦௦

ଵ ,	is	equal	to	the	true	number	of	
sibships	with	one	sister	in	the	population,	ܭ௧௨ଵ ,	multiplied	by	the	probability	
that	the	sister	has	died	before	the	time	of	the	survey.	It	follows	that	the	number	
of	sibships	with	one	sister	that	are	not	represented	in	the	sampled	population	
due	to	zero‐reporter	bias	is	equal	to	equation	(3).	We	can	multiply	this	estimate	
of	the	number	of	missing	sibships	by	the	number	of	females	in	the	sibship,	which	
in	this	case	is	one,	to	get	an	estimate	of	the	number	of	females	in	each	age	group	
that	are	missing	from	the	sample	because	they	have	died.	We	then	expand	this	
number	so	that	we	have	on	observation	per	missing	sibling,	assign	birth	and	
death	dates	to	these	missing	siblings	based	on	the	distribution	in	the	observed	
siblings,	and	append	them	to	our	existing	dataset.	
	
Our	estimate	of	ܽݍ

ଵ	is	the	GK	weighted	cumulative	probability	of	death	for	age	
group	ܽ.	By	definition,	this	is	an	underestimate	because	we	are	omitting	women	
in	zero‐reporter	sibships	from	our	calculation.	To	account	for	this,	we	treat	the	
estimation	of	missing	siblings	as	an	iterative	process	and	update	our	estimate	of	
ݍܽ

ଵ	at	the	end	of	each	cycle	until	we	converge	on	a	single	value	of	ܽݍ
ଵ	and	

missing	female	siblings.		
	
	As	noted	before,	we	can	expand	this	estimation	procedure	to	families	with	two	
sisters	(or	two	siblings	of	either	sex	in	the	case	of	the	PHMRC	data).		The	
corresponding	equations	when	both	sisters	are	within	the	15‐49	age	range	are	as	
follows.	
	

௦ܭ
ଶ ൌ ௧௨ଶܭ ∗ ሺ1 െ ݍܽ

ଵ ∗ ݍܽ
ଶሻ	 	 	 (4)	

	
௦௦ܭ
ଶ ൌ ௧௨ଶܭ ∗ ݍܽ

ଵ ∗ ݍܽ
ଶ	 	 	 	 (5)	
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∴ ௦௦ܭ
ଶ ൌ ್ೞ

మ

ଵିబ
భ∗బ

మ ∗ ݍܽ
ଵ ∗ ݍܽ

ଶ	 	 	 (6)	

	
Where	ܭ௦

ଶ 	is	the	number	of	observed	sibships	with	two	sisters	in	our	sample,	
௧௨ଶܭ 	is	the	true	number	of	sibships	with	two	sisters	in	the	population,	ܭ௦௦

ଶ 	is	
the	number	of	sibships	with	two	sisters	that	were	missed	due	to	zero‐reporter	
bias,	ܽݍ

ଵ	is	the	cumulative	probability	of	death	for	the	first	sister	and	ܽݍ
ଶ	is	the	

cumulative	probability	of	death	for	the	second	sister.	Equation	(6)	is	solved	in	an	
iterative	manner	for	every	combination	of	five‐year	age	groups	in	the	sample.	
	
Similarly,	for	sibships	of	two	sisters	in	which	the	first	sister	is	within	the	15‐49	
range	but	the	second	is	not,	the	equations	are	different	because	the	survival	of	
the	second	sister	does	not	contribute	to	the	probability	of	the	sibship	being	
observed	in	the	sample.	The	corresponding	equations	are	as	follows	and	the	
estimation	process	is	conceptually	identical	to	the	previous	two	cases.	
	

௦ܭ
ଶ ൌ ௧௨ଶܭ ∗ ሺ1 െ ݍܽ

ଵሻ	 	 	 	 	 (7)	
	
	 	 ௦௦ܭ

ଶ ൌ ௧௨ଶܭ ∗ ݍܽ
ଵ ∗ ݍܽ

ଶ  ௧௨ଶܭ ∗ ݍܽ
ଵ ∗ ሺ1 െ ݍܽ

ଶሻ		 (8)	 	
	

∴ ௦௦ܭ
ଶ ൌ ್ೞ

మ

ଵିబ
భ ∗ ݍܽ

ଵ ∗ ݍܽ
ଶ  ್ೞ

మ

ଵିబ
భ ∗ ݍܽ

ଵ ∗ ሺ1 െ ݍܽ
ଶሻ	 (9)	

	


