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Abstract

We extend Bayesian population reconstruction, a recent method for estimating past popu-

lations by age, with fully probabilistic statements of uncertainty. It simultaneously estimates

age-specific population counts, fertility rates, mortality rates and net international migration

flows from fragmentary data while formally accounting for measurement error. As inputs,

Bayesian reconstruction takes initial bias-reduced estimates of age-specific population counts,

fertility rates, survival proportions and net international migration. We extend the method to

apply to countries without censuses at regular intervals. We also develop a method for using

it to assess the consistency between model life tables and available census data, and hence to

compare different model life table systems. We show that the method works well in countries

with widely varying levels of data quality by applying it to reconstruct the past female popu-

lations by age of Laos, a country with little vital registration data where population estimation

depends largely on surveys, Sri Lanka, a country with some vital registration data, and New

Zealand, a country with a highly developed statistical system and high-quality vital registration

data.

Keywords: Bayesian hierarchical model, Fertility, International migration, Model life ta-

ble, Mortality, Vital registration data.

The release of World Population Prospects 2010 (WPP 2010; United Nations [UN] 2011a)

coincided with considerable interest in the size of the world population in both the popular and

academic literature (e.g. Gillis & Dugger 2011; Reuters 2011; Phillips 2011; Nagarajan 2011;

Alberts 2011) perhaps due to the then imminent arrival of the seven billionth person. There was

considerable uncertainty about when that person would be born. In this article, we extend and

apply a new method, introduced by Wheldon, Raftery, Clark, and Gerland (2013), for estimating

past and current population by age and sex and for assessing the associated uncertainty.

Information about uncertainty can be conveyed by providing interval estimates, rather than

simply point estimates as is done for many official statistical releases. Such intervals should have a

probabilistic interpretation; they should contain the true value with some specified probability, con-

ditional on the assumed statistical model. Wheldon et al.’s (2013) method produces such intervals.
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It reconstructs population structures of the past by embedding formal demographic relationships

in a Bayesian hierarchical model. The outputs are joint probability distributions of demographic

rates and population counts from which fully probabilistic interval estimates can be derived in the

form of Bayesian confidence intervals (or “credible intervals”). The method has been designed to

fit within the United Nations Population Division (UNPD)’s current work-flow and to deal with

the lack of reliable data commonly experienced in many developing countries. Nevertheless, we

hope it is general enough to be useful for other demographers interested in estimating population

structures of the past. We will refer to the new method as “Bayesian reconstruction”.

Our aims are as follows. We show that Bayesian reconstruction is useful in a wide range of

data quality contexts by reconstructing the populations of countries for which data quality varies

from poor to extremely good. In all cases, Bayesian reconstruction indicates when estimates of

vital rates are inconsistent with census results. This means that the method can be used to compare

competing model life tables. We also extend the method to unevenly spaced censuses.

The remainder of the paper is structured as follows. In the next section we review existing

methods of population reconstruction. Following that, we describe the method. Then we apply

Bayesian reconstruction to the female populations of three countries: The People’s Democratic

Republic of Laos (Laos), Sri Lanka and New Zealand. The New Zealand case shows that the

model performs sensibly for countries with very good data and the Laos case for fragmentary data.

We use the case of Sri Lanka to demonstrate our extension to unevenly spaced censuses. Bayesian

reconstruction detected inconsistencies between survey-based estimates of fertility and intercensal

population changes, and provided a correction. There is relatively little mortality data for Laos

and we use this case to illustrate how Bayesian reconstruction can be used to choose between

competing model life tables. We conclude with a discussion.
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POPULATION RECONSTRUCTION METHODS

Many human population reconstructions in the demography literature fall into one of two cate-

gories: reconstruction of populations of the distant past using data of the kind commonly found

in European parish registers (e.g. Lee 1971, 1974; Wrigley & Schofield 1981; Oeppen 1993a,

1993b; Bertino & Sonnino 2003) and reconstruction of population dynamics after extreme crises

such as famine or genocide (e.g. Boyle & Ó Gráda 1986; Daponte, Kadane, & Wolfson 1997;

Heuveline 1998; Merli 1998; Goodkind & West 2001). General methodology has been primarily

developed in the former context, the latter being necessarily focused on special cases. In some

form or another, the cohort component model of population projection (CCMPP) (Lewis 1942;

Leslie 1945, 1948) is central to almost all methods of population reconstruction.

Two significant developments were Lee’s (1971, 1974) “inverse projection” and Wrigley and

Schofield’s (1981) “back projection”. Inverse projection converts counts of births and deaths into

the respective rates. Reconstruction proceeds forward in time. Counts of baseline population and

model age patterns of fertility and mortality are also required. Where at least two independent esti-

mates of population size are available, net migration can also be estimated (Lee 1985). In contrast,

back projection takes counts at the terminal year and then moves backward in time, reconstruct-

ing population counts and net migration along the way. Several iterations might be required to

produce a satisfactory result. There was considerable debate about the efficacy of back projec-

tion, centered partly around identifiability issues that arise from trying to “resurrect” members

of the open ended age group and simultaneously estimate fertility, mortality and migration rates

(Lee 1985, 1993). Further developments are described by Barbi, Bertino, and Sonnino (2004).

Oeppen (1993a), Oeppen (1993b) and Bonneui and Fursa (2011) frame reconstruction as a high

dimensional optimization problem. All of the above methods are deterministic and produce point

estimates only.

Stochastic inverse projection (SIP) was proposed by Bertino and Sonnino (2003). It incor-

porates a specific kind of stochastic variation into the reconstruction, taking inputs similar to
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those required by inverse projection. Model age patterns of fertility and mortality are treated

as individual-level probabilities of death rather than fixed, population-level rates. Like its prede-

cessors, stochastic inverse projection (SIP) was designed to work with accurate time-series of total

births and deaths. The uncertainty in the final estimates comes only from modeling birth and death

as stochastic processes at the level of the individual (Lee 1998 called this “branching process un-

certainty”). There is no allowance for measurement error in the data, nor is there any stochastic

variation in the model fertility and mortality age patterns. For most developing and less-developed

countries, information about births and deaths is not highly accurate, and age patterns of births and

deaths are known only approximately. In these cases, the uncertainty is due mainly to measurement

error. In fact, even for well-measured populations, at the national level where counts are large, Lee

(2003) and E. Cohen (2006) note that uncertainty due to stochastic vital rates is likely to be small

relative to uncertainty due to measurement error; see also Pollard (1968).

The aim of Daponte et al. (1997) was to construct a counterfactual history of the Iraqi Kur-

dish population from 1977 to 1990, a period during which it was the target of considerable state-

sponsored violence. A Bayesian approach was taken in which vital rates and population counts

were modeled as probability distributions. Prior distributions for fertility and mortality rates based

on survey data and beliefs about the uncertainty founded on studies of the data sources, histori-

cal information and knowledge of demographic processes. Conclusions from estimated posterior

distributions took the form of fully probabilistic interval estimates. This approach took account of

uncertainty due to measurement error and made use of contextual knowledge to make up for frag-

mentary, unreliable data. However, there were some restrictions, such as allowing mortality to vary

only through the infant mortality rate and specifying fixed age patterns of fertility. Our approach

is similar in spirit but more flexible as no model age patterns are assumed to hold throughout the

period of reconstruction.
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METHOD

Mathematical details can be found in Wheldon et al. (2013). Here we give a more conceptual

overview. All computation was done using the freely available statistical software package R (R

Development Core Team 2012); Bayesian population reconstruction is implemented in the package

“popReconstruct”.

Description of the Model

The method reconciles two different estimates of population counts, those based on adjusted census

counts (or similar data) and those derived by projecting initial estimates of the baseline population

forward using initial estimates of vital rates. Adjusted census counts are raw counts which have

been processed to reduce common biases such as undercount and age heaping. Since projection is

done using the CCMPP, the parameters for which we require initial point estimates are the CCMPP

inputs, namely population counts for the baseline year, fertility rates, survival proportions and the

net number of migrants, all by age group, over the period of reconstruction. Migration is treated in

the same way as fertility, mortality and baseline population counts.

Estimates of the measurement error for each parameter are also required. These can be based

on expert judgment or preliminary analyses such as post-enumeration surveys. Data and expert

knowledge sufficient to generate these inputs are available for most countries from about 1960.

The comparison is through a Bayesian hierarchical (or multilevel), statistical model which provides

probabilistic posterior distributions of the inputs, as well as population counts at each projection

step in the period of reconstruction.

Initial point estimates of the input parameters are derived from data. Baseline population es-

timates come from adjusted census counts (or similar sources), fertility and mortality estimates

from surveys such as the Demographic and Health Surveys (DHSs) and vital registration. The

model defines a joint prior distribution over these parameters which is parameterized by the ini-

tial point estimates and standard deviations. Typically, the initial point estimates will serve as the
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marginal medians of this distribution, but this is not a requirement. The standard deviations repre-

sent measurement uncertainty about the point estimates. These distributions induce a probability

distribution on the population counts at the end of each projection step within the period of recon-

struction. Uncertainty about the true population numbers at the time of a census is also modeled

by probability distributions. Adjusted census counts are taken as the median of these distributions

and measurement uncertainty is represented analogously by standard deviations.

It is important that counts (adjusted or otherwise) from censuses in years after the baseline

year not be used to derive initial estimates of fertility, mortality and migration. This means, for

example, that intercensal survival rates should not be used to estimate mortality, and that “residual”

counts, the difference between census counts and counts based on a projection using fertility and

mortality alone, should not be used to estimate migration. Doing so would amount to using the

census data twice, once to derive initial estimates of vital rates and once to derive adjusted census

counts, which would lead to an underestimate of uncertainty.

In standard Bayesian terms, treating the induced distribution of projected counts as a prior

and the distribution of census counts as a likelihood, Bayesian reconstruction yields a posterior

distribution of the inputs via Bayesian updating. This distribution can be usefully summarized

by marginal Bayesian confidence intervals for each input parameter which express uncertainty

probabilistically. Furthermore, confidence intervals for age-summarized parameters such as total

fertility rate (TFR) and life expectancy at birth (e0) can be obtained. Using simulation, Wheldon

et al. (2013) found that Bayesian reconstruction produced well-calibrated marginal Bayesian con-

fidence intervals. That is, p-percent Bayesian confidence intervals for each parameter of interest

were found to contain the true value p percent of the time.

Often, projected counts based on a sample from the joint prior on the input parameters will

not equal the same-year adjusted census counts. This discrepancy is sometimes called an “error

of closure” (Preston, Heuveline, & Guillot 2001). The discrepancy can be reduced by making

appropriate adjustments to any, or all, of the CCMPP input parameters and census counts. Many

different combinations of adjustments will have the same effect on the discrepancy; for example,
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adding a migrant of age x has the same effect on the age-x population count as removing a death

to a person of age x. The posterior distribution is a distribution over all possible combinations of

CCMPP input parameters which assigns higher probability to those combinations leading to larger

reductions in the discrepancy. This means that each age-time specific component of the input

parameters is not affected equally, but proportionately according to the effect it has on the joint

posterior.

In our case studies, the periods of reconstruction are delimited by the earliest and most recent

censuses. Reconstruction can be done beyond the year of the most recent census if initial estimates

of vital rates and international migration are available, but these latter initial estimates cannot be

updated without a census.

Bias

Estimates of vital rates and population counts from surveys and censuses are susceptible to bias.

For example, fertility rate estimates based on birth histories suffer from omission and misplacement

of births due to recall error and census counts may be biased due to undercount in certain age

groups (Zitter & McArthur 1980; Preston et al. 2001). Bayesian reconstruction does not treat

bias explicitly because demographic data differ markedly across parameters, time and countries.

Many methods for estimating and reducing these biases have been proposed such as post-censal

enumeration surveys (e.g., United Nations [UN] 2008, 2010), “indirect” methods (e.g., United

Nations [UN] 1983), and Alkema, Raftery, Gerland, Clark, and Pelletier’s (2012) method for TFR.

Methods appropriate for adjusting census data will not, in general, be applicable to vital registration

or survey data. Even within these broad categories, there is great variation among countries and

time which makes development of a general approach infeasible. Therefore, the analyst applying

Bayesian reconstruction will need to select bias reduction methods appropriate to the data being

used. We illustrate some possibilities in the case studies.
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Measurement Error Uncertainty

Bias reduced initial point estimates of the CCMPP input parameters are still subject to measure-

ment error; that is, variation that is non-systematic and cannot realistically be eliminated or other-

wise modeled. In Bayesian reconstruction, measurement error is represented by the prior standard

deviations of the initial estimates. In many cases there is not much data with which to estimate

these parameters, but there is often a great deal of relevant expert knowledge. This can be included

by giving the variances themselves prior distributions and using the expert knowledge to set the

fixed hyperparameters of these distributions, thereby defining a hierarchical model. To do this,

we require a value for p in statements of the form “there is a 90 percent probability that the true

fertility rates are within plus-or-minus p percent of the initial point estimates”, and similarly for

survival proportions, migration proportions and population counts. We asked UNPD analysts to

provide p, which we refer to as the “elicited relative error”.

CASE STUDIES

To show that Bayesian reconstruction works in a variety of situations, we used the subjective but

useful evaluations of UNPD analysts to select three countries based on the quality of their mortality

rate data: 1) New Zealand, with complete vital rate data based on vital registration; 2) Sri Lanka

with good vital rate data requiring only small adjustments; 3) Laos with only limited under-five

mortality estimates available and fertility data from a few demographic surveys. Thus we analyze

New Zealand with excellent data, Sri Lanka with intermediate data, and Laos with poor data.

Wheldon et al. (2013) analyzed Burkina Faso which, in terms of data availability, sits between

Laos and Sri Lanka, having data on both adult and under-five mortality.

Each case is discussed separately below. We briefly describe the original data sources and the

processes used to derive the initial estimates, and present results for four demographic parame-

ters: TFR, net number of migrants, e0 and under-five mortality. We give the limits of 95 percent

Bayesian confidence intervals of our initial estimates and the posterior distributions of selected
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parameters using the notation: “(lower, upper)”. We compare our results for fertility and mortality

to those published in WPP 2010 for years with comparable estimates. WPP 2010 was based on a

different procedure but the same data, therefore the comparison is useful.

Laos, 1985–2005

Data and Initial Estimates

National censuses were conducted in 1985, 1995 and 2005. These data allow us to reconstruct the

female population between 1985 and 2005. We used the census year counts in WPP 2010; there

were no post-enumeration surveys, but these counts were adjusted to compensate for undercount

in certain age groups.

Initial estimates of age-specific fertility rates were based on direct and indirect estimates from

the available surveys. Age-specific initial estimates were obtained by multiplying smoothed esti-

mates of TFR by smoothed estimates of the age-pattern of fertility. Due to the small number of

data points, smoothing was done by taking medians across data source for each age- time-period.

The only available mortality data are for infant and under-five mortality. Therefore our initial

estimates came from the Coale and Demeny (1983) West (CD West) model life tables with values

of 1q0 and 5q0 close to those estimated from available data.

Elicited relative errors for population counts, fertility and mortality were set to 10 percent.

There is not much information about migration. To model this, we set initial point estimates to

zero for all ages and time periods, but used a large elicited relative error of 20 percent.

Results

Figure 1 shows our prior and posterior distributions for the four demographic parameters together

with WPP 2012 estimates for fertility and mortality. The Bayesian reconstruction estimate of TFR

differs from the initial estimates in the five-year periods beginning 1985, 1990 and 2000. While

both imply consistent decreases in fertility, the initial estimates appear to be too high in all but the

10



Presented at IUSSP IPC, Busan, 2013

third five-year period. Our posterior intervals suggest a level of fertility more similar to WPP 2010,

except our estimates suggest that the acceleration in the decline begins one five-year period later.

Migration is estimated simultaneously with fertility and mortality. Posterior uncertainty for

the average annual total net number of migrants has been significantly reduced relative to prior

uncertainty (Figure 1b). The mean half-width of the posterior intervals is 6,099 compared with

142,777) for the prior intervals.

Figure 1a shows that the posterior intervals are not constrained to lie inside the prior intervals.

Sri Lanka, 1951–2001

Data and Initial Estimates

Censuses were conducted in Sri Lanka in 1953, 1963, 1971, 1981 and 2001 and so we reconstruct

the female population between 1953 and 2001. We took population counts from WPP 2010 which

were adjusted to account for underenumeration. Initial estimates of age-specific fertility rates were

derived in a manner similar to that used for Laos, although at the level of TFR we used loess

(Cleveland, Grosse, & Shyu 1992; Cleveland 1979) to smooth multiple data points across time-

period. Initial estimates of age-specific survival proportions were based on abridged national life

tables calculated form death registration and available surveys. Elicited relative errors for all of

these parameters were set at 10 percent.

We used the same default initial estimate of international migration as for Laos. Luther,

Gaminirante, de Silva, and Retherford (1987) provide age-specific estimates for the periods 1971–

1975 and 1976–1980 using census data as well as information about vital rates. Their results are

not suitable as a basis for initial estimates because they were derived, in part, from census counts,

so we use them for comparison instead.

Interpolation to Handle Irregular Census Intervals

Wheldon et al. (2013) assumed that censuses were taken at regular intervals but there is an irregular

gap between the 1963 and 1971 censuses. Therefore, we propose interpolating the CCMPP outputs
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Figure 1. Prior and posterior medians and 95 percent Bayesian confidence intervals of selected param-
eters for the reconstructed female population of Laos, 1985–2004. Prior medians correspond to initial
estimates. (a) Total fertility rate. (b) Total net number of female migrants (average annual). (c) Female
life expectancy at birth. (d) Female under-five mortality rate (deaths to 0–5 year olds per 1,000 live
births).
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on the growth rate scale such that they coincide with the census years. We explain by way of an

example.

Consider the number in the population aged [x,x+5] for which we have a census-based estimate

at 1963 and another census-based estimate at 1971. Initial estimates for vital rates are available at

1963, 1968, 1973, and at subsequent five-year increments. The CCMPP can be used with these

data to derive projected counts for this age group in 1968 and 1973. To compare the CCMPP

output with the census counts at 1971, we assume that the growth rate for this age group, rx,1968,

was constant between 1968 and 1973, and estimate it from the projected counts. The estimate is

then used to interpolate the CCMPP output to 1971. Using a “hat” (̂) to denote “estimate”, this

is compactly expressed as:

r̂x,1968 =
1
5

log
(

nx,1973

nx,1968

)
; n̂x,1971 = (nx,1968)e3r̂x,1968 .

We use a similar method to extrapolate the population counts from the 1953 census back to 1951

using the 1953–1963 growth rate. Interpolating in this manner is adequate for periods of length

less than five years.

Results

Poster distributions for the demographic parameters are summarized in Figure 2. Our posterior es-

timates of mortality and migration agree closely with those of WPP 2010 and Luther et al. (1987).

Applying Bayesian reconstruction suggests, however, that the sources upon which the initial esti-

mates were based are inconsistent with intercensal changes in the number of births. The posterior

estimates of TFR from Bayesian reconstruction differ noticeably from the initial estimates in the

periods 1951–1956 and 1956–1961 (posterior intervals (5.18, 5.72) and (5.35, 5.92); initial esti-

mates 5.01 and 5.03 children per woman, respectively). Our method has automatically provided a

correction which, in this case, yields results similar to the WPP 2010 estimates.
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Figure 2. Prior and posterior medians and 95 percent Bayesian confidence intervals and WPP 2010
estimates of selected parameters for the reconstructed female population of Sri Lanka, 1950–2000.
Prior medians correspond to initial estimates. (a) Total fertility rate. (b) Total net number of female
migrants (average annual). (c) Female life expectancy at birth. (d) Female under-five mortality rate
(deaths to 0–5 year olds per 1000 live births).
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New Zealand, 1961–2006

Data and Initial Estimates

Census counts came from national censuses conducted every five years between 1961 and 2006.

Initial estimates of fertility rates were calculated from published age-specific fertility rates (Statis-

tics New Zealand 2011a) and numbers of births (Statistics New Zealand 2012) by age-group of

mother by year. Initial estimates for survival proportions were calculated from New Zealand life

tables (Statistics New Zealand 2011b).

Information about the measurement errors of these parameters was available in the form of

census post-enumeration surveys (PESs) and estimates of the coverage achieved by the birth and

death registration systems. Elicited relative errors were based on this information and were set to

2.5 percent, one percent, and one percent for population counts, fertility and mortality, respectively.

Information about international migration is quite reliable given that New Zealand is a small

island nation with a well-resourced official statistics system. The basis of our initial estimates of

international migration are counts of permanent and long-term migrants (PLT) migrants taken from

arrivals and departures cards (Statistics New Zealand 2010). The largest source of error in these

data as estimates of international migration is the discrepancy between the stated intentions and

actual behavior of travelers. To reflect this, we set the elicited relative error of this parameter to

five percent.

Results

The posterior distributions for TFR, total net number of migrants, e0 and under-five mortality

are summarized in Figure 3. Our posterior estimates of mortality and fertility follow the initial

estimates closely. This is not unexpected; the initial estimates were based on data of high quality

and coverage. The least reliable data, a priori, were those for migration. Our posterior intervals

suggest small corrections in some time periods. The initial estimates for periods between 1961 and

1974 appear to be too high while those for periods between 1976 and 1989 are too low.
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Figure 3. Prior and posterior medians and 95 percent Bayesian confidence intervals and WPP 2010
estimates of selected parameters for the reconstructed female population of New Zealand, 1961–2006.
Prior medians correspond to initial estimates. (a) Total fertility rate. (b) Total net number of female
migrants (average annual). (c) Female life expectancy at birth. (d) Female under-five mortality rate
(deaths to 0–5 year olds per 1000 live births).
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CHOOSING BETWEEN ALTERNATIVE INITIAL ESTIMATES

OF MORTALITY

In our application to Laos we derived initial estimates of over-five mortality from the CD West

model life table. This choice was made by UNPD analysts who drew on previous studies (Hart-

man 1996a, 1996b; United Nations [UN] 2011b). However, other approaches are possible. Here,

we compare the results above with those given by an alternative set of initial estimates of survival

based on a different model life table, and use them to explain why the CD West model should be

preferred. To do this, we look at the age specific mortality rates, rather than e0.

The posterior distribution of e0 in Figure 1c was computed from the posterior distribution of

the age specific survival proportions, 5Sx[t, t + 5], which are output by Bayesian reconstruction.

These were converted into age-specific annual mortality rates using the separation factors implicit

in the CD West life table. Medians and the limits of 95 percent Bayesian confidence intervals for

the marginal posterior distributions of these parameters are shown in Figure 4 on the log scale.

Posterior uncertainty about these quantities is very low; the mean half-widths over age, within

year, are all less than 0.004.

An alternative set of initial estimates for the 5Sx[t, t +5] was generated from the same data on

under-five mortality, but adult mortality was estimated using the Brass two-parameter relational

logit model with the United Nations South Asian (UNSA) model life table, e0 = 57.5 years. Fig-

ure 5 gives the initial estimates and marginal posteriors of the survival proportions using these

alternative survival estimates, but keeping the initial estimates of all other parameters the same.

The posterior intervals are much wider under this set of initial estimates; the mean half-widths

over age, within year, are between 0.02 and 0.06; a five- to fifteen-fold increase on the log scale.

The wider intervals show that using the alternative initial estimates greatly increases posterior

uncertainty. In addition, for many of the older age groups, the posterior medians are actually closer

to the CD West initial point estimates than those used to fit the model. This suggests that the initial

estimates based on the CD West life tables are much more consistent with the intercensal changes
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Figure 4. Prior and posterior medians and 95 percent Bayesian confidence intervals of the age-specific
log mortality rates for the reconstructed female population of Laos, 1985–2004. Prior medians corre-
spond to initial estimates which were calculated using the CD West model life table.
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Figure 5. Prior and posterior medians and 95 percent Bayesian confidence intervals of age-specific log
mortality rates for the reconstructed female population of Laos, 1985–2004. Prior medians correspond
to initial estimates. Initial estimates and posterior distributions were calculated using the UN South
Asian model life table and the Brass two-parameter logit relational model.
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in population counts, given the initial estimates for the other parameters, and that they should be

preferred over the UNSA-derived initial estimates.

Looking at e0 in Figure 6 leads to the same conclusion. Again, uncertainty is much greater

under the alternative set of initial estimates (cf. Figure 3c). The posterior distribution has shifted

away from the initial estimates used to fit the model toward those derived from the CD West model

life table. In fact, all CD West initial point estimates are contained within the 95 percent posterior

interval based on the alternative estimates while this is not the case for the initial estimates used to

fit the model.
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Figure 6. Initial and posterior estimates of e0 for Laos females, 1985–2000, using Brass two-parameter
logit model and the UN South East Asia model life table. This figure summarizes the same results
shown in Figure 5.

We emphasize that our preferred set of initial estimates are those generated using the CD West

standard. Our purpose here is not to advocate for the UNSA standard, or the Brass two-parameter

logit model, but to present an alternative, plausible set of initial estimates which we can use to

generate an alternative set of posterior estimates for use in a comparative analysis.
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DISCUSSION

In this article we have demonstrated and extended the method of reconstructing past, national-

level population structures introduced by Wheldon et al. (2013). This method embeds the standard

CCMPP in a hierarchical statistical model which takes initial estimates of vital rates and popula-

tion counts as inputs, together with expert opinion about their relative error (informed by data if

available). International migration is handled in the same way as the other inputs, and yields fully

probabilistic interval estimates for all of the inputs. The approach is Bayesian as the initial esti-

mates serve as informative, but not restrictive, priors for population counts through the CCMPP,

which are then updated using available census data over the period of reconstruction. Reconstruc-

tion can be undertaken for any period for which estimates of baseline population, vital rates and

international migration are available. However, reconstruction beyond the year of the most recent

census will be based on the initial estimates alone.

We presented 95 percent Bayesian confidence intervals for the marginal distributions of TFR,

total net number of migrants, e0 and under-five mortality. Ninety-five percent intervals cover the

range of most likely values. Results for TFR and age-specific fertility for Laos showed that the

posterior intervals are not constrained to lie inside prior intervals, nor are they necessarily more

narrow than prior intervals. Our posterior estimates of TFR for Laos and Sri Lanka suggested that,

in some years, the initial estimates based mainly on surveys were inconsistent with intercensal

changes in the number of births and Bayesian reconstruction was able to provide an appropriate

correction.

We showed that the method works well when applied to different countries spanning a wide

range of data quality characteristics. For Laos, all mortality data are for ages five and below and

come from surveys, while New Zealand has complete period life tables based on vital registra-

tion. Sri Lanka and Burkina Faso (analyzed in Wheldon et al. 2013) lie between these extremes.

The posterior intervals for New Zealand were much more narrow than those for Sri Lanka and

Laos, reflecting the greater accuracy and coverage of the New Zealand data. The greatest value
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of Bayesian reconstruction is likely to be for those countries without well-resourced statistical

systems. Roughly half of all the countries and areas included in the WPP fall into this category

(UN 2011a).

The method as described in Wheldon et al. (2013) was limited by the fact that it required

census data at regular intervals. Here, we have relaxed this requirement by showing that linearly

interpolating census counts on the growth rate scale produces good results.

We have also shown how Bayesian reconstruction might be used to help choose between two

sets of initial mortality estimates. We compared the posterior distributions of age-specific mortality

rates for Laos derived from initial estimates based on the CD West model life table and the Brass

two-parameter relational logit with the UNSA model life table. In the latter case, the interval

widths were much greater. This implies that the CD West based initial estimates agree much more

closely with the data on fertility, mortality and population counts and they should be preferred.

Bias and measurement error variance are handled separately under Bayesian reconstruction.

Existing demographic techniques, such as indirect estimation via P/F ratios and model life tables,

are used to reduce bias in initial point estimates based on raw data collected from surveys, vital

registration and censuses. The nature of bias varies greatly across parameters, time and country,

hence we do not propose a general purpose method to replace the many existing techniques. In-

stead, the analyst is able to select the most appropriate technique for the data at hand. Measurement

error variance is accounted for through the standard deviations of the initial point estimates. Expert

opinion is used a priori to set reasonable ranges for measurement error uncertainty.

To ensure that uncertainty is not underestimated, census data should not be used to derive initial

point estimates of vital rates and migration. If no reliable migration data are available, the default

initial point estimates should be centered at zero with a large elicited relative error.

Bayesian reconstruction was developed and demonstrated for female-only populations and our

immediate goal is to extend the method to two-sex populations. We anticipate that focusing on a

two-sex extension separately will allow us to more carefully consider the dependencies between

female- and male-specific parameters. A further potential refinement is to use single-year age
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groups and time periods.

A great deal of attention has already been directed at the estimation of uncertainty in demo-

graphic forecasts, as opposed to estimates about the past which we focus upon here. The study of

stochastic models for forecasting dates back to at least Pollard (1966) and Sykes (1969). Further

developments are reviewed by Booth (2006) with more recent additions in Hyndman and Booth

(2008), Scherbov, Lutz, and Sanderson (2011) and Alkema, Raftery, Gerland, Clark, Pelletier, et

al. (2011). One component of error in forecasts of population size is the error in estimates of pop-

ulation size and the vital rates prevailing at the jump-off time. While the ergodic theorems of De-

mography (Lotka & Sharpe 1911; Lopez 1961) imply that these become irrelevant if one forecasts

far enough into the future, short term forecasts can be significantly affected (e.g., Keilman 1998;

National Research Council, Commission on Behavioral and Social Sciences and Education 2000).

It is possible, then, that Bayesian reconstructions could contribute to improved forecasting methods

by providing important information about the uncertainty in estimates of jump-off populations.

The fact that official statistical estimates are not perfect is undisputed. The UNPD acknowl-

edges this both explicitly (UN 2011a) and implicitly in the fact that the WPP are revised biannually

as new sources of data become available and methods are improved. Therefore, augmenting point

estimates with quantitative estimates of their uncertainty is an important contribution. For many

countries, the available data are fragmented and subject to bias and measurement error, thus the

expert opinions of demographers are very valuable. A Bayesian approach is especially appropriate

since this can be used in conjunction with the available data in a statistically coherent manner.
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